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Abstract

Human learners can readily understand speech,
or a melody, when it is presented slower or
faster than usual. This paper presents a deep
Scale-Invariant Temporal History Convolution
network (SITHCon) that uses a logarithmically
compressed temporal representation at each level.
Because time rescaling of the input results in a
translation of the memory representation over log
time, and because the output of the convolution is
equivariant to translations, this network can gen-
eralize to out-of-sample data that are temporal
rescalings of a learned pattern. We compare the
performance of SITHCon to a Temporal Convo-
lution Network (TCN) on classification and re-
gression problems with both univariate and mul-
tivariate time series. We find that SITHCon, un-
like TCN, generalizes robustly over rescalings of
about an order of magnitude. Moreover, we show
that the network can generalize over exponentially
large scales without retraining the weights sim-
ply by extending the range of the logarithmically-
compressed temporal memory.

1. Introduction

Many problems in machine perception require integration
of information over continuous time. In the natural world,
these temporal signals can unfold over different time scales.
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For instance, one would want a speech recognition system to
be able to identify words spoken more quickly than usual—
perhaps the user is in a hurry—as well as more slowly—
perhaps the user is tired or has one of several neurological
conditions that affect the rate of speech. People can naturally
adapt to time series presented at different rates. For instance
most people can easily identify a familiar melody played
at an unfamiliar speed, yet this is a class of problems that
proven difficult for many forms of Al Although deep neural
networks have revolutionized a number of fields that rely
on representing time series, including speech perception
(Lea et al., 2017), they do not generalize across rates of
presentation and need to be explicitly trained on a wide
range of time scales (Chan et al., 2021). This paper presents
a deep convolutional neural network (CNN), inspired by
recent work in neuroscience, that generalizes to time series
presented at untrained rates.

The way the mammalian brain retains information about the
time of past events provides a novel strategy to construct
deep networks that are invariant to rescalings of their inputs.
Populations of neurons referred to as “time cells” (within
the hippocampus, entorhinal cortex, and lateral prefrontal
cortex) fire in sequence after a triggering stimulus (Fig. 1,
Eichenbaum, 2014). Different time cells fire at different
characteristic times after the triggering stimulus form a tem-
poral basis set. Because different sequences of cells are
triggered by different environmental stimuli (e.g., Tiganj
et al., 2018; Taxidis et al., 2020), the population forms a
representation of what happened when in the past. Critically,
the temporal basis set is compressed (Kraus et al., 2013).
Psychological data and theoretical considerations suggest
that the basis set ought to evenly cover log time rather than
linear time (Balsam & Gallistel, 2009; Shankar & Howard,
2013; Tiganj et al., 2018; Howard et al., 2015). Notably,
neurophysiological evidence suggests that the brain uses a
logarithmically-compressed temporal memory in a number
of widely-spaced brain regions, including auditory cortex,
cerebellum and hippocampus (Rahman et al., 2020; Guo
et al., 2020; Cao et al., 2021).

A temporal memory constructed over log time is uniquely
robust to temporal rescalings. Consider a time series that
is rescaled by a factor a, ¢t — at (Fig. 1). Because
log(at) = log(t) + log(a), rescaling time by a factor a
simply results in a translation, by a factor log(a), along a
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Figure 1. The brain represents a logarithmically-compressed tem-
poral memory that turns rescaling of physical time into translation
of the memory. A. Time cells in the rodent hippocampus fire in the
time after a relevant stimulus. Each line shows the firing rate of
one neuron during time within the delay period of a memory exper-
iment. The cells are sorted on their peak time. Note the curvature
of the central ridge. B. The same data shown as a function of log
time. Note that the central ridge appears as a straight line with a
constant width when plotted as a function of log ¢t. After Cao, et
al., (2021). C. A function, f(¢) and a time rescaled version f(5t).
D. The same functions plotted as a function of logt. Note that
rescaling stretches the functions as a function of time but results in
a translation as a function of log time.

logarithmically-compressed temporal memory. In computer
vision deep CNNs have been extremely successful because
they are equivariant, modulo edge effects, to translation of
their input. By building a CNN with a maxpool operation
over a logarithmically-compressed temporal memory, we
construct a network, referred to as SITHCon whose output is
invariant to time rescaling. (Fig. 3). We contrast SITHCon
with a Temporal Convolution Network (TCN). TCNs are
deep CNNs constructed over a linear temporal memory that
have been applied, often with state of the art performance, to
speech recognition, sequence modeling, and action recogni-
tion from video (Bai et al., 2018; Lea et al., 2017). Because
the TCN uses a standard temporal memory that samples the
input signal at evenly-spaced time points, time rescaling of
the input does not result in translation of the memory. As a
consequence, the TCN should not generalize over temporal
rescaling.

2. Methods

Each layer of SITHCon is composed of a logarithmically-
compressed temporal memory—SITH—followed by a con-
volutional layer and a dense layer. The logarithmically-
compressed memory is the primary novel component of the
network and is responsible for the generalization to rescaled
inputs.

2.1. Scale Invariant Temporal History (SITH)

The goal of the scale-invariant temporal memory is to pro-
vide a record of the recent past as a function of time at each
moment. Given an input signal f(¢), let us define the history
leading up to the present time ¢ as f;(7) = f(t — 7), where
7 runs from zero at the present to infinity in the remote
distant past. The temporal memory estimates f;(7) in the
neighborhood of N. discrete time points Tn. We refer to

the state of the memory at time ¢ as f;[n].

Two properties enable the SITH buffer to be logarithmically-
compressed. First, rather than choosing the difference be-

tween adjacent values of T to be constant, the ratio between
adjacent values is constant:

Tn=(14¢"""7, 1)

where c is positive, and derived from the parameters 7y,
Tmaz, and N:

oo Tmar TT g @)
Tmin
Equation 1 implies that the temporal receptive fields are
evenly separated as a function of log time log 7*'n+1 -
log Tn = 1+ c. Second, the temporal receptive field of
each node is a function of 7/ T

o= [T () fu(r) dr

0
i O(1') fo(Tor’)dr’ 3)

= @0 fi(7). )

The particular choice of ¢ fixes the shape of the receptive
fields. Here we choose ¢(z) = ¥ exp(—kx) for some
constant k. The effects of k£ on the shape of the receptive
fields can be seen in Fig. 2. ¢ is a unimodal function that
peaks at 1. As k becomes larger, the function ¢ becomes
more sharply peaked. Because each temporal receptive field
has the same shape relative to 7*'n and because the 7*'n are
evenly-spaced as a function of log 7, the temporal memory
evenly samples f;(7) as a function of log 7.
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Figure 2. The effect of k on the temporal receptive fields in SITH.
A. Plot of receptive fields ¢ (7 /7,,) for 7’s in geometric series. For
clarity, each receptive field has been scaled to have the same peak
(i.e., multiplied by 7n). B. The same receptive fields plotted on a

log scale. C. The function ¢ (7 /7) for different values of k. Larger
k results in tighter receptive fields.

2.1.1. RESCALING TIME INDUCES A TRANSLATION OF
ACTIVITY IN SITH

In this study we are interested in the effects of time-rescaling
the input 7 — a7. Equation 4 makes clear that, for a
particular node n, rescaling 7 can be undone by taking
7*'n — ;n /a. However, because the 7s are chosen in a
geometric series, and the temporal receptive fields are a
function of 7/ T changing Tn by factor of 1/a is equivalent
to translating n such that n — n + A where A = log,, . a.

With a finite number of nodes, rescaling is not precisely
translation. First, with a finite number of nodes, information
will be lost near the edges of the array. Second, even neglect-
ing the edges, there is only a precise translation over the
discrete set of nodes if a is chosen such that A is an integer.
However if c is sufficiently small and k is not too big, such
that the blur in the temporal receptive fields is large relative
to the spacing between the nodes, there is a node whose
activation will be similar to the initial node even if A is not
an integer.

2.2. SITHCon

The SITHCon network (Fig. 3.D) is a deep network. An
external signal with N features provides the input to SITH
at the first layer. The SITH memory at each layer at each
time point is given by Eq. 4 operating on the input to that
layer. We write

fO =dp0 fO), Q)
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Figure 3. Temporal scale-invariance in SITHCon. A-C:
Translation-invariance in standard CNNs. A: Example images
in three possible locations. B: 2d convolution output of filters as
a function of position. The output is translated. C: Activation
following 2d max pooling results in translation-invariance. D-H:
Scale-invariance in SITHCon. D: Diagram of the SITHCon net-
work. Orange represents layers with learnable weights, where
purple represents no learnable weights present. E: A time series
f(t) at three different time-scales. F: SITH layer output for the
different scales. Because the SITH is logarithmically-compressed,
a change in scale results in translation of the memory. G: Because
the convolutional filters are applied to the output of SITH, the
convolutions are also translated. H: Max pooling the output of the
convolutional layer results in scale-invariance.

where the operator @, is just given by Eq. 4, to describe
the SITH memory on the ¢th layer. The remainder of each
layer takes a convolutional neural network over the SITH
memory, followed by a max pooling operation and then a set
of dense weights. The output of the dense weights becomes
the input to the next layer:

FOHD - a(W@mgx [gu)* f(i)D’ 6)

where g(i) are 2-D convolutional filters of size Ny x K,
W) is a dense layer with N; x N; weights and o is a
ReLU function. The max,, operates over the V. time in-
dices rather than the feature indices, thereby returning the
maximum output of the convolution kernel at a specific 7in
the past.

The temporal memory in each layer in the network f@
provides a conjunctive representation of what happened
when. Each layer has the same form of logarithmically-
compressed temporal memory. Critically, however, the form
of the “what” information changes from one layer to the
next due to the learned weights from one layer to the next.

Consider how the entire network responds to rescaling the
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input on the first layer. As established in section 2.1.1,
time rescaling of the input has the effect of translating f
at the first layer, modulo edge effects. The index at which
the convolutional filters match this memory will also trans-
late, again modulo edge effects. However, the max pool
operation discards information about the index at which
the convolution reached its maximum, so that the features
passed on to the next layer at a corresponding time point are
invariant to rescaling. Note, however, that the magnitude
of the rescaling is expressed by the network as the index at
which the maximum value was found.

The region over which edge effects are important is easily
calculated. If the maximum of a particular filter is found
at some index j, then if K/2 < j < N. — K/2 and the
rescaling gives A such that K/2 < j + A < N, — K/2,
then edge effects can be neglected. In practice, different
features at different layers will not in general have the same
maximum index, so with enough features and enough layers,
there is a real possibility that the network as a whole is not
robust to time rescaling even if each of the layers taken
individually is invariant over a wide range. We treat it as
an empirical question whether these ranges overlap for the
problems studied here.

These considerations suggest a strategy to develop networks
that rescale over an arbitrarily large range of scales without
retraining. After training a network on a particular problem,
one can simply add 7 nodes to each layer of the network.
Even if the original network does not generalize over scales,
one is guaranteed that all of the features learned at all of the
layers will be able to scale over the added nodes. The range
of scales over which the network will generalize should
go up exponentially like (1 + c)N, where N is the number
of additional nodes. Notably, the number of weights is
unaffected by the number of nodes added to the network.
The convolution simply operates over a larger range. In this
way, one ought to be able to construct efficient SITHCon
networks that generalize over an exponentially wide range
of scales with no additional commitment of training time.

2.2.1. RELATION TO PREVIOUS WORK

SITHCon is closely related to the DeepSITH network
Jacques et al. (2021). Both networks utilize SITH as a com-
pressed representation of the past. Both networks include
dense connections from one layer to the next. The core
difference between these two models is that SITHCon, but
not DeepSITH, includes a convolutional layer and maxpool
operation at each layer.

DeepSITH was applied to a variety of challenging time se-
ries problems. Unlike RNNs, including LSTMs, DeepSITH
was able to learn time series problems even when they re-
quired the network to learn very long-range dependencies.
Section 2.1.1 provides some insight into why DeepSITH

is able to learn time series problems with very long-range
dependencies. DeepSITH weights take the representation of
compressed time of size (7*', N¢;) to the inputs at the next
layer (Ny;11). Consider how DeepSITH would behave if,
after training on a problem with some time series f(t), the
network was trained on the same problem with time rescaled
t — at. Because of the temporal memory at each layer re-
sponds to time rescaling as translation along the log time
axis, we know that DeepSITH would provide the same out-
put to f(t)—neglecting edge effects—if all of the weights
were translated along the time index by A = log;, .a. In
this sense, DeepSITH’s ability to learn time series problems
is invariant to the time scale of the problem.

The addition of convolution and maxpooling enables SITH-
Con to respond equivalently—neglecting edge effects—to
time-rescaled inputs without retraining. This also means
that the two networks would behave differently to a training
set that includes problems at many time scales. Whereas
SITHCon is able to use the same weights for f(¢) and f(at),
DeepSITH would require additional weights to learn the dif-
ferent scales. For this reason, we would expect DeepSITH
to learn problems with a mixture of scales across training
examples more slowly and at greater cost in terms of number
of weights than SITHCon.

2.3. TCN

In the following experiments, we compare SITHCon to the
TCN from Bai et al. (2018). The TCN was introduced
as a generic convolutional architecture used in sequence
modeling tasks, and is well regarded as a replacement for
canonical recurrent neural networks (RNN). This is due in
part to its performance on many machine learning bench-
marks that require a long temporal history. SITHCon and
TCN are similar in that both are made up of a series of layers
that encode information at various scales. TCN networks
use causal convolutions, preventing any leakage of future
information into the past. In addition, these convolutions
have exponentially increasing dilations, which gives each
layer an “effective history” of (K — 1) times the dilation.

There are two fundamental differences between TCN and
SITHCon. The first is that TCN convolutions operate di-
rectly on normal time, where SITHCon layers apply their
convolutions to compressed time. The second is that a SITH-
Con network’s effective history is limited by their largest
7, which goes up exponentially with the number of nodes.
The effective history of the TCN is limited by the number
of layers and the dilation at each layer.

We use the TCN implementation supplied by Bai et al.
(2018) at https://github.com/locuslab/TCN. Each TCN has
eight layers with 25 channels each. The kernel size was
chosen for each experiment to give a reasonable number of
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weights.

3. Experiments

We examined the performance of SITHCon and TCN on
two classification tasks, and one regression task. In each
experiment, the networks were trained at a single training
scale (or a few scales in Exp. 4). After the networks were
fully trained, we then compared SITHCon and TCN in their
ability to generalize to unseen scales.

The Morse Decoder task requires the networks to classify
the 43 Morse code digits presented as a time series. The
Morse Addition task uses two input features and is very
similar to the Adding Problem benchmark. The networks
must learn to add the values of two Morse code digits pre-
sented within a continuous stream of digits, and marked by
active bits in a parallel time series. This task requires both
digit recognition and memory, which must both be main-
tained with changes in temporal scale. Finally, the Audio
MNIST task (Becker et al., 2019) requires the networks to
classify spoken digits 0-9 in recordings by many different
speakers. We ran each experiment five times for each net-
work with different seeds to get a measure of variability in
performance.

In all experiments, SITHCon was similarly configured, with
two SITHCon layers, each with 400 values of T log-spaced
from 1 to 3000 or 4000 and k of 35. The width of the
convolution kernels was set to 23 with a dilation of 2. The
only difference in the model between the experiments was
the number of convolution channels, which were varied
based on the complexity of the problem. The TCN was also
largely similar across experiments, with 8 total layers, only
varied in number of input channels and the kernel width.
We list the comparable parameters between the TCN and
SITHCon networks in Table 1.

3.1. Exp. 1: Morse Decoder

Morse code is a standardized way to encode text into a
one-dimensional time series comprising different sequences
of dots and dashes (i.e., short and long activation periods),
each separated by short periods of silence. Differentiating
the 43 different Morse code signals is a relatively simple
time-series classification problem because each Morse code
symbol is a unique pattern of dots and dashes. We trained
SITHCon and a TCN to differentiate the Morse code sym-
bols at a single scale. Then we tested the two networks on
Morse code symbols presented at a range of unseen temporal
scales.

A Morse Decoder B
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Figure 4. Stimuli and tasks for the three experiments. Time is on
the x axis. A: The Morse Decoder problem requires the network to
learn the label associated with the 43 Morse code symbols (seven
of which are shown here). Yellow is an “on” bit, while blue is an
“off” bit. B: Morse Addition takes two-dimensional time series
as inputs. One dimension contains a stream of ten Morse code
digits, the other contains two activation pulses indicating which
Morse code symbols are to be added (shown in red). The correct
answer for the network is 0.1 times the sum of the two indicated
digits (shown above each example time series). C: The Audio
MNIST task requires the network to recognize the label associated
with spoken digits from a variety of speakers. Here a single clip
(the spoken word SEVEN) is shown as a spectrogram (normalized
power as function of frequency and time) at three different scales.
In Exp. 3.A the networks learned stimuli at scale 1.0, and were
tested at the other scales. In Exp. 3.B the networks are trained
on five scales and then tested on stimuli from those five and four
additional interleaved scales.

3.1.1. EXP. 1.A: SIGNAL CLASSIFICATION AT MULTIPLE
SCALES

The training dataset consisted of 43 Morse Code symbols
(letters, numbers, and punctuation/symbols). Each dot in a
symbol was represented by the signal being “on”—set to a
value of 1—for one time step and “off”—set to to O for one
time step. Each dash was represented by the signal being

“on” for three time steps and “off” for one time step. At

the end of each symbol, the last dot or dash was followed
by three time steps of “off”. Examples of these symbols
are shown in Fig. 4.A. We trained these networks with the
symbols where each time step was of length 10. This scale
was designated as scale 1.0, so that we could easily scale
both up and down relative to the training sequences.

Once the networks reached 100% classification accuracy
on the 43 Morse code symbols, we tested the networks on
various time-rescalings using the same trained weights. We
take each of the Morse Code signals and repeat every bit
different numbers of times. For example, to test a network’s
accuracy at 2 times the training scale, we repeated every bit
20 times. Fig. 5.A shows the results of SITHCon and TCN
on different scales. As expected, TCN and SITHCon were
able to reach 100% accuracy at a scale 1.0. However, the
two networks showed very different generalization across
scales. Whereas the TCN fell to chance-level performance
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SITHCoON TCN
Exp WTs. LAYERS K CHAN. | WTSs. LAYERS K  CHAN.
1. MORSE DECODER 33K 2 23 35 142K 8 14 25
2. MORSE ADDITION 31K 2 23 25 425K 8 46 25
3. AUDIOMNIST 71K 2 23 35 171K 8 16 25

Table 1. Network parameters for each experiment. K is the kernel size for the convolutions. Chan. is the number of convolution channels.
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Figure 5. SITHCon generalizes over unseen scales. Performance on Exp. 1.A, 2, and 3.A as a function of testing scale. The dashed
vertical red line in each plot indicates the training scale. Error bars are 95% confidence intervals over 5 distinct runs. A: Morse Decoder,
performance measured with accuracy on Morse code digits scaled to different lengths. B: Morse Addition, performance measured with
mean squared error on a held out test set of 1000 scaled signals. C: Audio MNIST, a classification task involving multiple recordings of
spoken digits preprocessed with wavelet decomposition. Performance measured with accuracy on held out recordings, scaled in tempo for

each test scale.

with even a small variation from the training scale, SITHCon
showed close-to-perfect generalization over scale increases
of an order of magnitude and was above chance over more
than two orders of magnitude.

3.1.2. EXP. 1.B: MAXIMUM EFFECTIVE RANGE
INCREASES EXPONENTIALLY WITH NUMBER OF
*
ADDED T NODES

Considerations discussed earlier in section 2.1.1 suggest
that the effective maximum time-rescaling of an alreacjl\?/-
trained STTHCon network should increase like (1 4+ ¢)"'*
as nodes are added. We define maximum time-rescaling
for this experiment to be the maximum amount we can
temporally scale the training signals while still achieving
100% accuracy. This experiment took a SITHCon network
trained to classify Morse Code digits at one scale using the
procedure in Exp. 1.A, and simply changed N .. Critically,
the nodes were added to the trained network with the same
relative spacing. Fig. 6 shows that the range of scales over
which the network generalizes goes up exponentially like
(14 c)Ni. This property should hold for any SITHCon
network trained on any task, enabling generalization over
exponentially large scales with a linear increase in memory
and no increase in the number of trained weights. Of course,
this procedure is only helpful if the initially-trained network
can learn the problem at hand.

3.2. Exp. 2: Morse Addition

For this experiment we developed a novel variant of the
Adding Problem (Hochreiter & Schmidhuber, 1997), which

we refer to as the Morse Addition. In this task, SITHCon
and TCN networks received a two-dimensional time-series
input. As illustrated in Fig. 4.B, the first dimension was
composed of a continuous stream of ten Morse code sym-
bols, which we mapped onto the numbers 0.0 through 0.9
and selected at random and with replacement to form a
sequence representing numerical values. The second di-
mension was only zeros except for two pseudo-randomly
selected locations with a value of 1.0, one occurring in the
first half of the signal and one occurring in the latter half.
The goal of the task was to decode the Morse code symbols
indicated by the bits in the second dimension, and then add
the two decoded symbol values together. For example, if
the symbols for 0.1 and 0.6 were identified as the targets
within the stream of 10 Morse code symbols, the networks
would have to output 0.7.

We trained the TCN and SITHCon networks on the Morse
Adding Problem such that each bit in the sequence was
repeated five times at scale 1.0. We trained both networks
to minimize Mean Squared Error (MSE). Once trained, we
evaluated each network’s ability to perform the task with the
input sequences at other scales. The TCN had 425k weights,
and SITHCon had 31k.

The results in Fig. 5.B demonstrate that, as expected, both
the TCN and SITHCon showed perfect performance at the
training scale. The dashed blue line in Fig. 5.B represents
chance performance of a hypothetical network that simply
guessed the mean of possible target values on every trial.
As the testing scale deviated from the training scale, TCN
suffered from rapid deterioration in performance, showing
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Figure 6. The largest effective scale grows exponentially with the
number of 7 nodes added to the network. After training the SITH-
Con network on the Morse Code classification task with N. = 400
we added T nodes to the already-trainined network. We measured
the range of scales over which the network successfuly generalized
(y axis, on a log scale) as a function of the number of nodes (x axis).
The orange line shows the theoretical curve given by (1 + c)iv
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performance worse than the hypothetical network when
the signals were rescaled even by a single bit. At large
scales, the TCN performed very poorly (Note the y-axis is
truncated). In contrast, the SITHCon network maintained
low error rates for changes in scale between .6 and 2.4, and
remained better over changes in scale of about an order of
magnitude. As discussed above, adding nodes to the already-
trained network would result in an exponentially large range
of generalization without learning additional weights.

3.3. Exp. 3: Auditory MNIST

The AudioMNIST dataset consists of 60 speakers, 33%
female, who were recorded speaking individual digits (0-9)
50 times each (Becker et al., 2019). We used this collection
of audio clips to create a training dataset consisting of 45 out
of 50 stimuli for each digit from all speakers. The remaining
5 stimuli per digit from each speaker were used for testing.
We first padded each 48kHz clip to 50,000 samples with an
equal number of zeros at the front and back of the recordings.
Then the stimuli were passed through a Morlet wavelet
transform with 50 log-spaced frequencies from 1000Hz to
24kHz and then Z-scored within frequency across time and
downsampled to 240Hz. The resulting stimuli for this task
had 50 input features and 250 time points at the standard
training scale.

To test the scalability of the TCN and SITHCon networks,

we created stretched and compressed versions of each audio
clip via pitch-locked time-scale modification prior to the
wavelet transformation (Driedger & Miiller, 2016; Muges,
2021) (see Fig. 4.C for example spectrograms of scaled
stimuli). These scales ranged from ten times slower (scale
> 109) to ten times faster (scale < 10°).

After training on scale 1.0 for ten epochs, the networks
were tested on held-out stimuli from a range of scales. The
results of this test are shown in Fig. 5.C. Both networks
showed essentially perfect performance when the test scale
was the same as the training scale. The TCN showed some
generalization for small variations in the testing scale, but
fell to chance performance rapidly. In contrast, SITHCon
maintained a high level of testing accuracy over scales that
varied from the training scale by more than an order of
magnitude. As discussed above, adding nodes to the already-
trained network would result in an exponentially large range
of generalization without learning additional weights.

3.4. Exp. 4: Variable Scale Training

Above, we have shown that while training on a single scale,
the TCN is unable to generalize to unseen scales. In this
experiment, we re-examine Exp. 1 and Exp. 3 as Exp. 4.A
and 4.B respectively. Rather than training only on scale 1.0,
the networks were trained on scales .1, .4, 2.5, and 10.0.

In Exp. 4.A, the amount of training items is 5x larger than
in Exp. 1, as we time-rescaled all of the training items to all
five training scales before the experiment. In Exp. 4.B, we
decided to keep the total number of training items the same
as in Exp. 3. Each run, we would randomly select a fifth
of the training items to always be scaled to .1, a fifth to .4
scale, etc.

The results are shown in Fig. 7. For both experiments
we see that only the SITHCon network could generalize
to unseen scales. Fig. 7.A shows that the TCN learned
to identify Morse code signals at the training time-scales
in Exp. 4.A, but was unable to generalize. Meanwhile
SITHCon was able to generalize better to the unseen faster
scales that it was unable to scale to previously. Fig. 7.B
shows SITHCon well outperforms the TCN at the training
time-scales, as well as the unseen time-scales. This is likely
due to the fact that SITHCon treats differently time-scaled
training samples of the same word as similar, whereas the
TCN has to learn how to recognize each different time-scale
and word individually. SITHCon is able to treat differently
time-scaled time-series signals as similar, and therefore save
computational resources by not having to learn to identify
them separately.
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Figure 7. Exp. 4, training at multiple scales and testing for generalization to intermediate scales. Here, Exp. 1 and Exp. 3 are repeated
with additional scales included during training. We trained networks on scales .1, .4, 2.5, 10.0, in addition to the standard training scale of
1.0. A: Repetition of Exp. 1. Each network was trained with the entire training set at every training scale, effectively creating a five-times
larger training set. As expected, SITHCon was able to scale at intermediate scales, while TCN still was not able to generalize well to
intermediate scales. B: Repetition of Exp. 3. Unlike in A, the total number of training samples was the same as in Exp. 3, and one fifth of
the samples were scaled to each training time-scale. SITHCon generalized well across untrained scales. The TCN did not generalize well
to intermediate scales, and performed worse than in Exp. 3 on the training scales.

4. Discussion

This paper presented SITHCon, a deep convolutional neural
network built from layers of logarithmically-compressed,
scale-invariant representations of the recent past and pooled
convolutions. Rescaling the input signal in time results in
a translation of the state of SITH over indices. Because
the output of the CNN layer depends on the maximum of
the activity over indices, each convolutional filter is scale-
invariant over a wide range of time-rescalings, limited only
by edge effects. Jansson & Lindeberg (2021) built a vi-
sual CNN that exploits similar ideas to generalize to visual
images of different sizes.

We performed a series of experiments and found that SITH-
Con generalized to a wide range of unseen temporal scales;
SITHCon generalized over time rescalings of about an order
of magnitude. TCN did not generalize to time rescalings
of the input signal. Techniques used for speech recognition
prior to the rise of deep networks, were robust to changes in
the rate of speech (e.g., Sakoe & Chiba, 1978). Although
deep networks have replaced these techniques, their mem-
ory representations require training on a variety of speech
rates. Deep convolutional networks with a logarithmically-
compressed temporal memory provide a strategy that could
combine the power of deep networks with a human-like
ability to generalize to time-rescaled input signals.

The SITHCon network also has capabilities that are very
different from natural learners. To obtain arbitrarily large
ranges of time-rescaling, one can take a trained network
and simply add 7’s to enable the network to generalize over
whatever range of scales is desired. The range of scales
over which the network can generalize goes up exponen-
tially with the number of 7’s added to the network with no
additional learned weights (Fig. 6).

The strategy employed in SITHCon would work for any

network with logarithmically-compressed temporal basis
functions and retains indices of the basis functions in an or-
ganized way to enable invariance (Lindeberg & Fagerstrom,
1996; De Vries & Principe, 1992). It should be noted that
general RNNs are extremely ill-suited for this purpose. It is
possible to write the set of linear filters in Eqgs. 1 and 4 as
a recurrent network (Liu & Howard, 2020)—resulting in a
scale-covariant RNN. Howeyver, it is not at all obvious how
to ensure that the RNN would reach that state after train-
ing without introducing constraints very similar to SITH.
Moreover, even if an RNN generated a set of temporal basis
functions, it would not be clear how to access the indices of
the temporal basis functions in order to make the memory
scale-invariant.

In this study, we computed ft by directly convolving the
input signal with ¢, which requires retaining the entire sig-
nal f;(7) at each moment in time. Insofar as fi samples
the signal at geometrically-spaced points (Eq. 1), one could
save memory if it were possible to update f, without retain-
ing each f;. One possibility is to compute an estimate of
the real Laplace transform of f;, Fy(s,) with s,, = k/;"n
Each of these nodes in F{s,) can be updated using only
the value of f at that moment and the node’s previous state.
One can estimate f; by using the Post approximation to the
inverse Laplace transform, which requires taking the kth
derivative with respect to s. In practice, the Post approxima-
tion becomes numerically unstable for high values of k. A
related approach is to construct f; from the F}(s,,) using a
cascade of convolutions of F'(s,,) values (Lindeberg, 2016).
The gamma network offers another solution (De Vries &
Principe, 1992).

For a scale-invariant network, training examples at different
speeds do not interfere with one another as they are treated
identically by the network. Many natural signals contain
information at very different temporal scales. In practice,
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machine learning applications have often addressed this
problem by brute force, training the network on many differ-
ent examples (e.g., Chan et al., 2021), as in Exp. 4. Perhaps
the brain has evolved logarithmically-compressed temporal
basis functions (Guo et al., 2020) to endow it with the abil-
ity to speed up learning and rapidly generalize to unseen
experiences.

In vision, researchers have long appreciated the importance
of generating features that are invariant to time-rescaling of
the input (Lowe, 1999). Jansson and Lindeberg 2021 use an
approach similar to that used here for MNIST digits of vari-
ous sizes. By generating a set of scaled representations of
visual images and integrating features over logarithmically-
spaced scales they achieve scale-invariance over a broad
range of spatial scales for essentially the same reason that
we observed effective scale-invariance over a range of tem-
poral scales in this paper (see also Lindeberg, 2016). In
natural vision, the image on the retina is not constant. Even
when objects in the world are prefectly still, movement of
the eyes still induces rich dynamics over a range of tempo-
ral and spatial scales. Rather than images, natural vision
operates on spatiotemporal patterns (Rucci & Victor, 2015).
Understanding how scale-covariance in both time and space
could be used to inform computer vision open question of
considerable theoretical and practical importance.

The Weber-Fechner Law is widely observed in behav-
ior across mammals suggesting that the strategy of
logarithmically-compressed basis functions seems to be
used quite broadly in the brain. In many cases, such as
perception of time or nonverbal numerosity (Gallistel &
Gelman, 2000; Dehaene & Brannon, 2011), the logarithmic
distribution cannot be attributed to the physical structure
of a sensory organ. This suggests the possibility that learn-
ing rules attempt to map representations onto continuous
logarithmically-compressed dimensions. Such represen-
tational spaces could naturally support the kind of scale-
invariance illustrated in this paper and allow for powerful
information processing with a simple neural architecture.
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