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Abstract

In this paper a simple biological model of hippocampal
region CA3 simulates the learning of hippocampally depen-
dent trace classical conditioning. In this biologically based
model, the time span of the associative modification rule is
5-fold less than the trace interval, implying that recurrent
cell firing must play a significant role in encoding the trace
interval. The results show that this simple network— with
its moderate time spanning synaptic modification rule and
sparse connectivity— can learn to span trace intervals com-
parable to those in rabbit eyeblink experiments [10, 11].
That is, the model learns to produce a cell firing pattern
equivalent to an anticipatory unconditioned stiumulus. This
anticipatory pattern contains the information needed to in-
tercept the unconditioned stimulus with a conditioned re-
sponse because it is delivered at an appropriate time before
the actual unconditioned stimulus.

1. Introduction

Although the cerebellum is the identified locus for learn-
ing and remembering classical conditioning [12], an in-
tact hippocampus is also necessary for a mammal to learn
the form of classical conditioning called trace conditioning
[10, 11]. In the trace paradigm, the animal must learn an
interval of time called the trace which spans the temporal
gap between the offset of the conditional stimulus (CS) and
the onset of the unconditioned stimulus (UCS). During this
period, the animal must withhold the conditioned response
(CR) until just before the UCS. In the classical conditioning
paradigms that use an air puff to the eye as a UCS, this re-
quirement of trace conditioning means that the eyeblink CR
is produced by the animal in a way that will block the air
puff UCS from hitting the eye. Thus, the animal must cor-
rectly time the eyeblink to just-anticipate the UCS. Without
a hippocampus during learning, the eyeblink CR is either
not learned or is delivered at the wrong time, i.e. too soon
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[10, 11].

The trace conditioning paradigm is arguably the simplest
sequence learning problem for which an animal needs its
hippocampus. The functional mechanism (i.e., the anatomy
and physiology) for learning trace conditioning is the prob-
lem that we address here by using a minimal biological
model.

Learning the trace interval can not be just a function of
known associative synaptic modifications in hippocampus.
That is, the synaptic modifications that provide the basis
for learning across time are too short, by themselves, to ex-
plain learning of the trace interval. Synaptic time spanning
associations are in the right direction (earlier presynaptic
excitation is associated with later postsynaptic excitation)
but only span 100 or, at the most, 150ms [8, 3] while the
trace interval is usually 250 or 500ms. Previously [8], we
proposed that, in addition to the temporal offset of associa-
tive synaptic modification, hippocampal circuitry would be
required to bridge the trace interval. Here, we demonstrate
that a very simple model of hippocampal region CA3 can
learn a trace interval longer than the time constant of the
associative synaptic modification rule.

2. Methods

The network used in this paper has a simple two-layer
architecture. The first layer is the input layer, which rep-
resents the entorhinal cortex and dentate gyrus (EC/DG).
The input layer projects, one-to-one, onto a sparsely con-
nected layer similar to the CA3 region made up of 1024
neurons. Each neuron in the CA3 layer projects recurrently
to 10% of the other cells, similar to the sparse recurrence
observed in vivo[1, 4]. Neurons are modeled as simultane-
ously updated McCulloch-Pitts units with a binary output
state z;(t) € {0, 1}. Recurrent excitation fires many more
neurons than are fired by the EC/DG input.

A competitive scheme determines which cells fire. After
computing the busline activation of each neuron,the simula-
tion sorts these activations and sets a variable threshold that



fires the precise number of neurons for the desired activity
level. As part of the competition, a neuron automatically
fires whenever its excitatory EC/DG input fires. We per-
formed all simulations at rather low activity levels (5%)
analogous to the low firing rates typically observed in the
hippocampus.

2.1. The Synaptic Modification Rule

We use an unsupervised Hebbian type postsynaptic as-
sociative modification rule, consistent with experimental
observations in the hippocampus, to update the synaptic
weights [7]. The rule spans time with the addition of a run-
ning average of the presynaptic firing state, Z;(¢). Thus at
time ¢, the synaptic weight w;;(t) is:

wi; (1) = wij(t — 1) + pz; O)[Z({) — wi; (¢ = 1)],

where
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At is the simulation time step, and p is the learning rate.
The multiple time step spanning modfication rule enables

us to represent real time in the network. For example for a

time step At, the decay rate of the running averager Z; is:
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where 7 represents the time constant of the NMDA receptor,
which appears to set the timing-window for associative mod-
ification in the hippocampus [2, 8]. In these simulations, we
use a network of 1024 cells with At = 20ms(nominal) and
7 = 100ms(i.e., 5 * At).

2.2. Network Input and Learning

Each simulation has two phases: training (learning) and
testing (recall). To reset the network before each presenta-
tion of the sequence, neurons are randomly activated to the
appropriate activity and allowed to cycle for 10 time steps
with synaptic modfication disabled.

During training, the external input drives the network
and recurrent synapses modify. The input consists of firing
10 neurons for 8 time steps (160ms), representing the tone
CS. The CS is followed by a trace period with no input.
The trace period is then followed by firing 15 neurons for
5 time steps (100ms), which represents the UCS air puft
(See Figure 1). The network receives the input sequence
repeatedly, i.e. enough times to form its own code for the
sequence (usually 200 trials). For different simulations the
trace periods varied from 5 to 100 time steps (100ms to
2000ms).

After training, we turn off synaptic modification, reset
the network, and begin testing. The test input is the 8 time
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Figure 1. Sample Input. This figure contains
examples of the CA3 network states for the
first (left) and the last (right) trial of training.
The large dots represent firing events. During
the first eight time steps (160ms), neurons 1-
10 are externally activiated(the CS). A 25 time
step (500ms) trace period, during which there
is no external stimulation, follows the CS.
During the last five time steps, neurons11-25
are externally activiated (the UCS). Note the
random firing of the neurons other than those
directly activated by the external input at the
beginning of training. After training, neurons
no longer fire randomly, rather they fire for
short episodes similar to place cell firing in
the hippocampus. Furthermore, note there
appears an anticipatory UCS with training,
marked by the recurrent activation of neurons
11 to 25 around time step 22.

step long pattern representing the CS. Then the simulation
runs freely, without any external input.

To examine the network code during and after training,
we compare network states by calculating the cosine of the
angle between the vectors representing the network states
at each time step. Thus, the normalized dot product over
time between two states results in a similarity matrix with
dimensions of the length of one sequence by the length of
the other. We use this cosine method to quantify both the



network code similarity to itself over various training cycles
and to compare the network’s output code to its final training
code when testing. A network mediated anticipatory UCS
is defined as a cell firing patter similar to and preceeding
the UCS firing patterns. If properly timed relative to the
duration of an eye blink, the onset of this anticipatory UCS
has the information needed to produce an appropriate CR.

3. Results

Figure 1 shows the firing pattern of neurons 1 to 100in the
model for the first trial of learning and for the last trial. The
training induced the alteration in firing of the recurrently
activated neurons is quite apparent. The initial scattered.
almost random firing, has been changed into very selective
firing patterns. Specifically, a neuron remains silent for a
long period of time, then it fires (if the neuron fires at all)
for a short period of time, and then it remains silent. Also
evident after training is the fact that the externally driven
UCS neurons are activated by the recurrent connections ear-
lier than they normally would be turned on by the external
input. Indeed, we find that the activation is about 160ms
earlier when the trace interval is 500ms.

Figure 2 shows the relationship, after learning, between
the trace interval used during training and the early onset of
the code for the unconditioned stimulus. Two observations
should be made. First of all, for a 500ms trace interval in ac-
tual animal experiments, the average conditioned response
is delivered 140ms prior to the onset of the UCS [5]. If we
take into account some delays within the nervous system,
it seems sensible that any system within the brain that is
clocking the trace interval in order to produce the early on-
set of a conditioned response, should actually precede this
140ms value. Thus. the timing of the anticipatory UCS is
certainly within a reasonable range of what might be needed
by the animal. Secondly, the long trace interval paradigms
are poorly, if at all, solved by the network (again Figure 2).
This failure to learn the trace interval is particularly appar-
ent for the 2000ms trace paradigm. In this case the learned
response, based on the coding of the UCS, would be given
almost immediately after the CS. In fact, this 2000ms is an
interval that the mammalian organism cannot learn. Finally,
we note that at shorter and shorter intervals, it gets more
and more difficult to produce a UCS code early enough.
However, to our knowledge this problem has not been in-
vestigated by experimental neuroscientists. Furthermore.
we suspect that with shorter and shorter trace intervals, the
role of the hippocampus in timing becomes less and less
important so that eventually the cerebellum alone is able to
produce the correct and appropriately timed response.

In Figure 3, we show the development of a neuronal code
over trials. Early in training, there is no stable code for the
trace period; i.e.. the codes over time are equally dissimilar.
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Figure 2. Early Onset of the Unconditioned
Response Codes. In analogy to the psycho-
logical experiments, we tried training the net-
work with a variety of trace intervals (indi-
cated on the abscissa). Plotted here is the
difference between the onset of the UCS and
the onset of the learned cell firing patterns
that code the UCS at each of the trace in-
tervals. The UCS codes always precede the
actual UCS. Note that the network trained in
the 500ms trace paradigm produces the code
for the UCS 160ms prior to the actual arrival
of the UCS. This interval seems to fit experi-
mental observations. Also fitting experimen-
tal observations are the much too early an-
ticipatory UCS’s when the trace interval is
substantially lengthened. Networks trained
with shorter trace intervals do not produce
the UCS code much before the arrival of the
actual UCS.

denoted by the light gray texture. Gradually, the network
forms codes for the CS and the UCS. Then the network
begins to form a code for the trace interval, propagating
forward from the CS. A little later, and to a lesser extent,
the UCS code moves backward. The forward and backward
propagating codes meet around trial 200, at which point we
can say that the network has fully encoded the sequence.

Simply forming a code for both the CS and the UCS is not
enough for the network to recall the UCS when prompted
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with the CS. If we test the network early in training, i.e.
before it has formed a complete code for the trace interval
connecting the CS to the UCS, the network can not anticipate
the UCS. Thus, the network must form a complete code
across the trace interval to bridge the CS to the anticpatory
UCS.

The network was able to form a code spanning the trace
intervals of 100ms, 240ms, 500ms, 740ms, and 1000m:s.
With trace intervals of 500ms and above, however, the net-
work’s code for the UCS encompassed all the patterns be-
yond 400ms into the trace period. Therefore, there seems to
be a limit to the length of the trace interval the network can
span before the UCS expands too far back. When presented
with the CS and UCS separated by a 2000ms trace interval,
the network did not form any distrinctive code for the trace
interval, coding the entire sequence with a single pattern
of neurons that fire throughout the training cycle, changing
only with the external input.
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Figure 3. Code Formation. Over learning tri-
als of CS-trace-UCS sequences, an internal
code develops in CA3. Shown here are pat-
tern similarities during the course of train-
ing. Each panel compares the 38 sequential
CAS cell firing patterns for a pair of training
trials. The darker the square, the stronger
the similarity. At the beginning of training,
the CS and the UCS codes are only crudely
distinguished from the trace interval and are
changing across trials (trial 1 vs. trial 20). By
trial 40, the distinct representations for the
CS and UCS are formed as are a few trace
bridging patterns growing out of the CS en-
coding. By trial 180 the code for the UCS
has moved backward several time steps and
a nearly complete sequence of moderately
distinct patterns bridges the trace interval.
By trial 200 the trace interval is bridged by
a relatively stable code. The external input
is supplied over time steps 1-8(the CS) and
time steps 34-38(the UCS). In this simulation
the trace period is 25 time steps (500ms).

4. Discussion

Trace classical conditioning is an extremely simple form
of learning, which is one of the reasons neuroscientists find it
such an interesting paradigm to investigate. Two other rea-
sons make this paradigm interesting. First, this paradigm
is clearly nonspatial in nature, the CS’s are usually audi-
tory; therefore, the cognitive mapping theory of hippocam-
pal function is irrelevant to understanding the role of the hip-
pocampus in trace conditioning. Secondly, the requirement
for the hippocampus in trace conditioning is only over the
initial few hundred trials [5]. Thus, hippocampal function
in trace conditioning is highly reminiscent of the function
posited for humans. That is, the neocortex is unable to learn
and store new memories in a long-term fashion without a
hippocampus that acts as an intermediate storage device.
For all these reasons a good neural network model of the
hippocampus should reproduce and explain the role of the
hippocampus in trace conditioning and eventually make ex-
perimental predictions. Here we are hypothesizing that the
correct timing that warns the animal of the impending UCS
is at least initially encoded by the hippocampus.

Although many variables remain to be investigated, we
are very much encouraged by the fact that the code for the
UCS migrates somewhat earlier than the UCS itself. We are
also encouraged by the fact that long trace intervals, which
an animal cannot learn [11], are also not learned by the



network. With the establishment of these results, we may
have a suitable model to understand the cellular and synaptic
functions that determine how far back in time the UCS code
will migrate and what processes prevent the learning of
longer trace intervals. Also, if we build more physiological
models, we should be able to predict even more detailed cell
firing patterns.

Still, and even without these more physiological models,
data, such as that seen in right portion of Figure 1, predict
a type of cell firing previously called local context neuronal
firings [9, 6, 13]. In these patterns, neurons essentially
take turns— and only one turn to a neuron— in marking a
particular subinterval. As in our earlier work with sequence
learning, where individual neurons learned subsequences,
here the cell by cell learning is of subintervals even though
there is no input pattern to learn during the trace interval.
If we are correct and such firing patterns prove critical,
then one limitation on trace learning is activity level and its
implied effects on sequence length capacity [9].
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