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Abstract Recent advancements in Bayesian modeling have
allowed for likelihood-free posterior estimation. Such
estimation techniques are crucial to the understanding of
simulation-based models, whose likelihood functions may
be difficult or even impossible to derive. However, current
approaches are limited by their dependence on sufficient
statistics and/or tolerance thresholds. In this article, we
provide a new approach that requires no summary statistics,
error terms, or thresholds and is generalizable to all models in
psychology that can be simulated. We use our algorithm to fit
a variety of cognitive models with known likelihood functions
to ensure the accuracy of our approach. We then apply our
method to two real-world examples to illustrate the types of
complex problems our method solves. In the first example, we
fit an error-correcting criterion model of signal detection,
whose criterion dynamically adjusts after every trial. We then
fit two models of choice response time to experimental data:
the linear ballistic accumulator model, which has a known
likelihood, and the leaky competing accumulator model,
whose likelihood is intractable. The estimated posterior
distributions of the two models allow for direct parameter
interpretation andmodel comparison bymeans of conventional
Bayesian statistics—a feat that was not previously possible.

Keywords Probability density approximation . Cognitive
modeling . Likelihood-free inference . Estimation .
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Introduction

The goal of cognitive modeling is to understand complex
behaviors within a system of mathematically specified
mechanisms or processes. While cognitive models can vary
in complexity from relatively simple models of choice
response time (e.g., Brown & Heathcote, 2008) to full
cognitive architectures (e.g., Anderson, 2007), cognitive
models all have a set of parameters that govern the proposed
mechanisms and, ideally, lend themselves to psychologically
meaningful interpretations. For example, a parameter might
correspond to bias, the tendency to prefer one alternative over
another, or discriminability, the degree of perceptual clarity a
stimulus provides.

Cognitivemodels are important because they are designed to
embody a set of psychological principles or cognitive theories.
In order to properly test the assumptions made by a cognitive
theory, a researcher would begin by designing an experiment
that directly tests the theory. The next step is to fit the cognitive
model to the data. A good model fit to the data would support
the underlying cognitive theory, whereas a bad fit would refute
the theory. After fitting the model, we obtain an estimate of the
model parameters, which carry valuable information about how
the model captures the observed behavior.

Given the detailed information that the parameters of a
cognitive model provide, from a theoretical perspective, it is
essential that we fully understand how the parameters of a
model affect the model predictions. Furthermore, it is critical
that we understand how the parameters behave and how
groups of parameters might interact with one another. From
an inferential perspective, it is important not only that our
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parameter estimates are accurate, but also that the degree of
uncertainty in our estimates can be properly assessed. Without
accurate and informative parameter estimates, we risk drawing
incorrect conclusions not only about the data, but about the
models as well.

Despite the importance of understanding the full range of
valid parameter estimates, the most common approach to
parameter inference is least squares estimation. In this
procedure, the goal is to determine the set of parameter values
that minimize some discrepancy measure (e.g., a Euclidean
distance metric) between the simulated and observed data.
Another approach is Bayesian modeling, which provides a
framework within which one can simultaneously understand
both the estimates of the model parameters and the uncertainty
about them.1 Implementing the Bayesian approach requires
both a prior distribution for the parameters of the model and a
likelihood function for the data. One can (virtually) always
specify a prior, which usually comes in the form of some
convenient distribution (e.g., a Gaussian distribution). By
contrast, the likelihood function can be difficult to fully
specify. Indeed, the difficulties encountered in deriving the
full likelihood function have prevented the application of fully
Bayesian analyses for many cognitive models.

Recent advances have made it possible to perform
Bayesian analyses without having an explicit likelihood
function, and these techniques have generated new insights
into simulation-based models (Beaumont, 2010; Beaumont,
Cornuet, Marin, & Robert, 2009; Beaumont, Zhang, &
Balding, 2002; Marjoram, Molitor, Plagnol, & Tavare, 2003;
Pritchard, Seielstad, Perez-Lezaun, & Feldman, 1999; Sisson,
Fan, & Tanaka, 2007; Turner, Dennis, & Van Zandt, 2013;
Turner, & Sederberg, 2012; Turner & Van Zandt, 2012, 2013;
Wood, 2010). While likelihood-free techniques have spurred
many new avenues for Bayesian analyses, at best, present
likelihood-free methods rely on an assumption that can rarely
be justified in practice. Specifically, likelihood-free methods
require that the set of summary statistics used by the algorithm
are sufficient for the model parameters of interest. A sufficient
statistic is a statistic that when calculated from a set of data,
provides just as much information about the unknown
parameters of a model as the entire data set. When a set of
summary statistics are not sufficient, one cannot guarantee
convergence to the correct posterior distribution. Because it
is often impossible to guarantee that a summary statistic is
sufficient when a likelihood function is unavailable,
likelihood-free algorithms that do not have sufficient statistics
necessarily introduce error into the posterior distribution, and
this error is not directly measurable (Beaumont, 2010).

Here, we present a fully generalizable method for
performing likelihood-free Bayesian parameter estimation that
does not depend on summary statistics. The method is based
on previous efforts for maximum likelihood estimation
(Fermanian & Salanié, 2004). Here, we adapt the method for
Bayesian estimation, extend it to data consisting of both
discrete and continuous measures (e.g., choice response time),
and apply it to several cognitive models. We begin with a brief
discussion of standard Bayesian methods. We then introduce
the probability density approximation (PDA) method and
discuss how it can be applied to discrete, continuous, and
mixed (i.e., data consisting of both discrete and continuous
measures) data types through illustrative examples. We then
apply the method to two real-world problems. First, we fit a
hierarchical, dynamic, criterion adjustment model of signal
detection to experimental data. Despite being dynamic, the
model’s likelihood function can be evaluated, and true
estimates of the posterior can be compared with estimates
obtained using the PDA method. Second, we fit two
hierarchical models of choice response time—the linear
ballistic accumulator (LBA; Brown & Heathcote, 2008)
model, and the leaky competing accumulator (LCA; Usher &
McClelland, 2001) model—to experimental data. The LBA
model also has a tractable likelihood function, which allows us
to further assess the accuracy of the PDA method. By contrast,
the LCAmodel is intractable, and so it has never been analyzed
using Bayesian techniques. Our Bayesian analyses provide a
new understanding of the parameters within all three models.

Bayesian estimation

The goal of Bayesian inference is to obtain the posterior
distribution of the parameters of interest θ conditioned on the
observed data Y ={Y1,Y2,…,YN}.

2 To do so, one must specify
both a likelihood function for the data, L(θ |Y), and a prior
distribution, π (θ ), for the parameters θ . To specify the
likelihood function, we require a probability density function
relating any observation Yi to the cognitive model. We will
denote this probability density function as Model(y |θ). If we
can assume that the observations Y are independent and
identically distributed (i.i.d.), the likelihood function is given by

L θjYð Þ ¼ ∏
i¼1

N

Model Y ijθð Þ: ð1Þ

To specify the prior distribution, we need only provide a
distribution that reflects our prior knowledge of the
distribution of the parameters θ . The selection of the prior is

1 While it is true that similar information can be obtained through the
Hessian or Fischer information matrix, such a procedure requires that the
log likelihood function be twice differentiable. When the likelihood
function is unknown—the central problem we address in this article—a
Hessian matrix cannot be calculated.

2 A detailed introduction to Bayesian methodology is beyond the scope of
this article. We recommend that the interested reader consult one of the
many texts on the topic (e.g., Christensen, Johnson, Branscum, &
Hanson, 2011; Gelman, Carlin, Stern, & Rubin, 2004; Kruschke, 2011;
Lee, & Wagenmakers, 2012)).
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subjective and will vary from one researcher to the next.
Because any number of distributions can be used to reflect
one’s prior knowledge, it is virtually always possible to
specify a prior.

Once the likelihood function and prior distribution are
specified for the model, the posterior distribution is given by

π θjYð Þ ¼ L θjYð Þπ θð ÞZ
L θjYð Þπ θð Þdθ ð2Þ

∝L θjYð Þπ θð Þ: ð3Þ
Equation 2 shows that the posterior distribution is a

function that provides the probability of the parameters θ ,
conditioned on the data that were observed. Having such a
distribution allows us to simultaneously assess the “best"
estimate for the parameter as well as quantify the uncertainty
in that estimate in a way that does not depend on hypothetical
data, as in null hypothesis testing (see Wagenmakers, 2007).

While the Bayesian framework is appealing and powerful
in theory, estimating the posterior distribution depends on our
ability to specify the likelihood function in Eq. 1. Because the
mechanisms used by cognitive models are often complex, the
likelihood function can be difficult to evaluate or even
impossible to specify mathematically. There are already a
number of models with intractable likelihood functions in
psychology, and we suspect that this number will grow with
the increased demand for neurological plausibility, temporal
dependency (e.g., free recall; Howard&Kahana, 2002; Polyn,
Norman, & Kahana, 2009; Raaijmakers & Shiffrin, 1981;
Sederberg, Howard, & Kahana, 2008), and unified
explanations of multiple measures of behavioral data (e.g.,
choice, response time, and confidence; Pleskac & Busemeyer,
2010; Ratcliff & Starns, 2009).

Consider, for example, the LCA model (Usher &
McClelland, 2001). The LCA model was proposed as a
neurologically plausible model for choice response time in a
k -alternative task. The model possesses mechanisms that
extend other diffusion-type models (e.g., Ratcliff, 1978) by
including leakage and competition by means of lateral
inhibition. Because the evidence accumulation process used
by the LCA model was designed to mimic actual neuronal
activation patterns, one critical assumption is that the degree
of evidence for any choice alternative can never be negative.
To accommodate this assumption, if any accumulator in the
model becomes negative, the degree of evidence for that
accumulator is reset to zero. The LCA model also assumes a
competition among response alternatives that depends on the
current state of each of the accumulators. Together, these
features of the model sufficiently complicate the equations
describing the joint distributions of choice and response time
such that the likelihood function for the LCA model has not

been derived. As a result, all model evaluations to this point
have been performed using either a model simplification or
least squares estimation (Bogacz, Brown,Moehlis, Holmes, &
Cohen, 2006; Bogacz, Usher, Zhang, & McClelland, 2007;
Gao, Tortell, & McClelland, 2011; Tsetsos, Usher, &
McClelland, 2011; Usher & McClelland, 2001; van
Ravenzwaaij, van der Maas, & Wagenmakers, 2012).

When one cannot evaluate Eq. 1, standard Bayesian
estimation is simply not possible. As a result, and given the
increased popularity of the Bayesian approach, there has been
a recent surge of interest in developing new techniques to
approximate the standard Bayesian solution. The general form
of a likelihood-free algorithm is to first propose a value for the
parameter of interest. Second, one simulates the model of
interest many times under the proposed parameter value.
Third, one calculates a set of summary statistics S (·) for both
the simulated and observed data (i.e., the data to be fit by the
model). Finally, the two sets of statistics are compared, and the
proposal parameter is assigned a “score” based on this
comparison (for tutorials, see Csilléry, Blum, Gaggiotti &
François, 2010; Turner & Van Zandt, 2012). If specified
properly, the scores associated with the proposals should
approximate the likelihood function. However, for
likelihood-free algorithms to work, the summary statistics
must be sufficient for the parameters of interest.

The problem of sufficiency

Condensing the data down to a set of statistics S (·) provides a
computationally convenient way to assess the similarity of the
simulated data X to the observed data Y. However, some
summary statistics carry more information about the unknown
model parameters θ than do others. The ideal situation is when
the summary statistics S (·) are sufficient for the parameters.
When using sufficient statistics, no information about the
unknown parameters θ is lost in the compression of Y to
S(Y) , and so the relationship

π θjYð Þ ¼ π θjS Yð Þð Þ;
is satisfied. If the likelihood function is known, one can use
the Fisher–Neyman factorization theorem (Rice, 2007) to
prove that a statistic is sufficient for θ or that a set of summary
statistics are jointly sufficient for θ .

Requiring that S (·) be sufficient is problematic because one
cannot guarantee sufficiency when the likelihood function is
unknown or is intractable because the Fisher–Neyman
factorization theorem cannot be applied. The most common
resolution is to select a large set of summary statistics and
hope that the set of statistics are jointly sufficient for the
parameters of interest. While adding more summary statistics
will tend to provide more information about θ , this is not
necessarily true in general. When a set of summary statistics
are not sufficient for the parameters, the influence of the
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information conveyed by the observed data will be weaker,
resulting in posterior distributions that are inaccurate,
particularly with respect to the degree of variability in the
estimated posteriors (Beaumont, 2010).

The probability density approximation method

Our method differs from other likelihood-free algorithms in
two substantial ways. First, the PDA method makes no
assumption that a set of summary statistics be jointly sufficient
for the parameters of interest. Second, the PDA method is a
nonparametric approach, and so it does not require any
restrictive assumptions about the distribution of the summary
statistics S (·), as required by other approaches discussed
below. The equations involved in describing the PDAmethod
differ depending on whether the data are discrete or
continuous. Thus, we first present the algorithm in a general
form and then provide more specific details for each of the
different types of data.

We again assume that the observed data Y = {Y1,Y2,…,
YN} arise from a model so that Y ~ Model(θ ).3 We begin by
generating a proposal θ*. The method for generating θ* can be
one of many options (e.g., importance sampling). We then use
θ* to simulate a set of data X = {X1,X2,…,XJ} from the
assumed model, so that X ~ Model(θ*). Next, we estimate
the form of the random distribution of X , which we call the
“simulated probability density function” (SPDF) and denote
f (x |X ). Using the SPDF, we evaluate the density of the
observed data Y under a given θ by the equation

Model Y ijθð Þ ¼ f Y ijXð Þ: ð4Þ
Thus, after evaluation of Eq. 4, we obtain a density under

the assumed model for every point in the data set Y. Because
the data are always sufficient to themselves, our density
estimation procedure allows us to guarantee sufficiency
because the summary statistics are computed for each
individual observation Yi.

In correspondence with Eq. 1, an approximation of the
likelihood function is

L θjYð Þ ¼ ∏
i¼1

N

Model Y ijθð Þ: ð5Þ

Because the likelihood function in Eq. 5 is still an
approximation, we denote it L θjYð Þ to draw a distinction
from Eq. 1. Thus, for a given proposal θ*, the “pseudo-

likelihood” is determined by plugging θ* in for θ in Eq. 5.
Finally, the posterior density, up to a constant of
proportionality, would be approximated by the equation

π θjYð Þ∝L θjYð Þπ θð Þ: ð6Þ
As was mentioned above, the construction of the SPDF

differs for different types of data. Specifically, for discrete
data, we construct an empirical probability mass function,
whereas for continuous data we construct a continuous
probability density function of the simulated data X . We
now discuss each of these specific applications in more detail.

Discrete data

For discrete data such as typical confidence responses (e.g., a
Likert scale) or the number of hits and false alarms (and by
extension, hit and false alarm rates), the SPDF f (x |X ) is
constructed by means of a probability mass function. We first
define a sample space S = {s1,s2,…,sn} as the set of all
possible outcomes in our experiment.

For example, in a recognition memory experiment, after a
study phase, subjects are asked to classify test items as either
“new” (i.e., not on the previously studied list) or “old” (i.e., on
the previous list). During the test phase, an experimenter can
present a distractor, an item that was not on the study list, or a
target, an item that was on the previously studied list. For each
item type presented at test, there are two possible responses,
and so there are only four possible stimulus–response
outcomes. By convention, memory researchers focus on the
number of hits and false alarms, which occur when a response
of “old” is elicited for a target item or a distractor item,
respectively. Hit rates are determined by dividing the number
of hits by the number of target items presented (i.e., the
number of possible hits). Similarly, false alarm rates are
determined by dividing the number of false alarms by the
number of distractors presented. If we let the total number of
targets in an experiment be denoted T and the number of total
distractors be denoted D , then the sample space for hit rates is
S = {0,1/T,2/T,…,(T −1)/T,1}, and the sample space for false
alarm rates is S = {0,1/D ,2/D ,…,(D −1)/D ,1}.

Due to randomness in the process of model simulation, the
simulated data X are random variables with their own sample
space. If we define the set of possible outcomes as
X ¼ x1; x2;…; xmf g , we can define a probability function
P(⋅) such that

P X ¼ xið Þ ¼ P sj ∈ S : X sj
� � ¼ xi

� �
; ð7Þ

which restricts the sample space of the simulated dataX to lie
in the sample space of the experiment S . Equation 7 is a way
of mathematically expressing that the probability of X
equaling a given value of x i is simply the number of times
that the simulated data equal the given value x i, divided by the

3 We note that the notation Model(θ) describes the distribution of a
random variable, whereas the notation Y ~ Model(y |θ ) denotes the
probability density at the location y, conditional on the parameters θ , as
in Eq. 1.
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total number of model simulations. Because Eq. 7 defines a
probability for all possible outcomes, we use it to construct
our SPDF so that

f xjXð Þ ¼ P X ¼ xð Þ; ð8Þ

which is then used in Eqs. 4 and 5 to evaluate the pseudo-
likelihood of the proposal θ*.

The signal detection theory model

As a concrete example, consider the equal-variance model of
signal detection theory (SDT; see Egan, 1958; Green & Swets,
1966; Macmillan & Creelman, 2005). For this model, the
parameters of interest are the discriminability parameter d′
and the bias parameter β , such that the hit rates h and false
alarm rates f are

h ¼ Φ d0=2−β
� �

; and

f ¼ Φ −d0=2−β
� �

;
ð9Þ

where Φ(x ) is the cumulative distribution function of the
normal distribution evaluated at the location x (Lee, 2008;
Lee & Wagenmakers, 2012; Rouder & Lu, 2005).

For this model, the true PDF is well-known, which permits
a direct evaluation of Eq. 1. To compare the quality of the
SPDF with the true PDF, we performed an illustrative
simulation study. We set the model parameters to θ = {d ′ =
1, β = 0.1} and used them to generate data consisting of an
“old”/“new” judgment for 100 test items, 50 of which were
targets and 50 were distractors. To construct the SPDF, we
simulated the model J = 1,000 times so that X ={X1,X2,...,

X1000}, where X j ¼ bhj; bf j

h i
and bhj and bf j are the empirical

hit and false alarm rates for the j th simulation. We then
evaluated Eq. 8 to obtain an estimated probability of the data
for each location in the data space.

Figure 1 shows the PDFs (densities) and the SPDFs (black
vertical lines) for hit (left panel) and false alarm (right panel)
rates. The true PDFs were obtained by evaluating

P H ¼ xjθð Þ ¼ Bin 50xj50; hð Þ; and
P F ¼ xjθð Þ ¼ Bin 50xj50; fð Þ;

where H and F are the possible hit and false alarm rates (i.e.,
the x -axis in Fig. 1), respectively, h and f are calculated by
Eq. 9, and Bin(x |a , b ) is the binomial density evaluated at the
location x with the number of trials equal to a and the
probability b of a single-trial success. The close match
between the true PDFs and the SPDFs demonstrates that
simulating the model 1,000 times provides a reasonably stable
approximation to the true PDF.

If we were interested in fitting the equal-variance SDT
model to observed data Y, we would then evaluate Eq. 8 by

plugging in each Yi for x . The densities obtained, f (Yi|X) =
Model(Yi |θ ) can then be multiplied to form the pseudo-
likelihood function in Eq. 5.

Continuous data

When the data Y have continuous measurements, we cannot
rely on a probability mass function to characterize the random
distribution of Y. Instead, we must use our simulated data X to
form an approximation of the PDF via a density function.
While there are many ways of specifying the density function,
we propose a nonparametric procedure by constructing a
kernel density estimate (see Silverman, 1986). A kernel
density estimate provides a way to estimate the true probability
density function by using the full simulated data set.

To use the PDA method, we proceed in the same way as in
the discrete case by first generating a proposal θ* and using
the proposal to generate a sequence of observations from the
model, so that X ~ Model(θ*). We then construct a kernel
density estimate of the simulated data so that

f xjXð Þ ¼ 1

hJ

X
j ¼ 1

J

K
x−X j

h

� �
; ð10Þ

where ∫f (x |X )dx = 1. The functionK(⋅) is the kernel, and h is a
smoothing parameter known as the bandwidth.4 The kernel is
usually chosen to be unimodal and symmetric about zero to
place a decreasing weight on observations Xj further from the
point where the density is being estimated. While the kernel
can take many forms, in this article we will consider only the
Epanechnikov kernel, given by

K xð Þ ¼
3

4
1−x2
� �

if x ∈ −1; 1½ �
0 if x ∉ −1; 1½ �

(
: ð11Þ

The accuracy of kernel density function is measured by the
mean integrated squared error (MISE), a measure of
divergence between a true and an estimated density function.
The Epanechnikov kernel was derived on the basis of
minimizing the asymptotic MISE, and so it is optimal in a
statistical sense (Epanechnikov, 1969; Silverman, 1986). To
select a bandwidth, we use Silverman’s rule of thumb, so that

h ¼ 0:9min SD Xð Þ; IQR Xð Þ
1:34

� �
n−1=5; ð12Þ

where SD (⋅) denotes the standard deviation and IQR (⋅)
denotes the interquartile range. While these choices work well

4 Although our kernel density estimate depends on the bandwidth h , we
drop this conditioning from the notation, for simplicity.
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for all of the examples we have performed and are the standard
methods available in the scientific libraries in R and Python,
we speculate that our method of kernel density estimation
could be further improved upon, especially in the case of
small samples (see, e.g., Chapeau-Blondeau & Rousseau,
2009; Kontkanen & Myllymäki, 2007).

Once we have constructed the SPDF f (x |X ) via kernel
density estimation, we can calculate the pseudo-likelihood
function by evaluating Eq. 5, and the posterior density is
determined by Eq. 6. Equations 4 and 5 together show that
each data point is used in the evaluation of the likelihood, so
while our kernel density estimation procedure uses statistics,
there is no compression of the observed data into summary
statistics. Hence, because the data are always sufficient to
themselves, our method guarantees sufficiency.

The Wald model

To illustrate our approach for continuous data, we now
demonstrate how the PDA method can be used to estimate
the parameters of the Wald model. TheWald distribution (also
known as the inverse Gaussian distribution) is a statistical
model of response times that is both analytically simple and
theoretically motivated, because it describes the behavior of
the first-passage time of a diffusion process with a single
boundary (Chhikara & Folks, 1989; Wald, 1947). Ratcliff
(1978) extended the single boundary diffusion process to a
two-boundary process, but in so doing, rendered the
likelihood function analytically intractable. Specifically, the
likelihood function for a single-choice response time pair
involves the sum of an oscillating but convergent infinite
sum (see Feller, 1968; Lee, Fuss, & Navarro, 2006; Navarro
& Fuss, 2009). However, for simple response time, where
subjects provide a single response as soon as a signal is
perceived (e.g., Heathcote, 2004; Luce, 1986; Schwarz,
2001), only one boundary is required for sequential-
sampling-based psychological models. Thus, for a single-

choice response time task, the Wald model can be used to
provide a simple interpretation of the underlying processes
theorized to be at work (see Rouder, Yue, Speckman, Pratte, &
Province, 2010, for a sophisticated application).

The three-parameter Wald distribution has the density

f yjα; ν; τð Þ ¼ αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π y−τð Þ3

q exp −
α−ν y−τð Þ½ �2
2 y−τð Þ

 !
; ð13Þ

where the parameter ν is related to the speed of cognitive
processing, α is related to the amount of accumulated
perceptual evidence that an observer requires before eliciting
a response, and τ represents a nondecision component
composed of processes such as perceptual encoding and
motor control.

To demonstrate the PDA method, we simulated the single-
boundary diffusion process with θ = {α = 2,ν = 2.2,τ = 0.1}
J = 10,000 times. The simulated data X were then used to
construct the SPDF f (x |X) by means of Eq. 10. We used the
Epanechnikov kernel, as in Eq. 11, and determined the
bandwidth parameter h by evaluating Eq. 12. The black line
in Fig. 2 shows the SPDF f (x |X ). For comparison, we also
calculated the true density by evaluating Eq. 13 along the
interval [0, 5], which is represented in Fig. 2 as the shaded
density. A visual comparison of these two distributions shows
that the SPDF closely resembles the true PDF, and a two-
sample Kolmogorov–Smirnov test failed to reject the null
hypothesis that the two distributions were from the same
generating mechanism (D = 0.072, p = .138).

For continuous measures, the computational complexity of
the PDA method may seem high. To lighten our
computational burden, we can exploit the common
assumption made in mathematical modeling of i.i.d. data.
We can benefit from the i.i.d. assumption here because, once
the SPDF has been constructed for a proposal θ*, the cost
associated with evaluating the likelihood function in Eq. 5 is
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Fig. 1 Simulated probability
density functions (black lines)
along with the true probability
density functions (shaded
densities) for the equal-variance
signal detection theory model. Hit
rates are shown in the left panel,
and false alarm rates are shown in
the right panel
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negligible with increases in the dimensionality of Y. While this
is a convenient result and as we will show later in this article,
the i.i.d. assumption is not required for the PDA method to
work. For example, the PDA method could be used to fit
models that do not assume an i.i.d. process (e.g., Craigmile,
Peruggia, & Van Zandt, 2010; Dorfman & Biderman, 1971;
Howard & Kahana, 2002; Kac, 1962, 1969; Peruggia, Van
Zandt, & Chen, 2002; Sederberg et al., 2008; Turner, Van
Zandt, & Brown, 2011; Vickers & Lee, 1998, 2000) by
constructing a density estimate for each data point in the
sequence Y (e.g., outcomes of trials within an experiment)
and then evaluating the density of each observed data point
under the corresponding SPDF. For these dynamic models, it
is less clear how one would specify summary statistics, as
required by other likelihood-free techniques.

Mixed data

Although we have outlined the PDA method for both discrete
and continuous measurements, we have not made the
extension to data consisting of both types explicit. Recently,
the demand for models that can explain multiple sources of
data simultaneously has increased (e.g., Cox& Shiffrin, 2012;
Nosofsky, Little, Donkin, & Fific, 2011; Pleskac &
Busemeyer, 2010; Ratcliff & Starns, 2009). One reason is
because data with multiple sources provide additional tests
on the legitimacy of the assumptions made by the models.
However, accounting for more sources of data generally
requires more complicated mechanisms or more sophisticated
assumptions, which can potentially render the likelihood
function for these more complicated models analytically
intractable.

For ease of exposition, we consider the common case of
data consisting of one discrete measurement (e.g., choice) and
one continuous measurement (e.g., response time). For the

discrete measurements, suppose there are C options, and for
the continuous measurements, there is an infinite number of
possible values. We adopt a new notation for our simulated
data, X = (X (1),X (2),…,X (C )), where X (c ) is the set of
continuous measurements for the c th discrete alternative. We
then introduce a vector containing the set of the number of
observations for each alternative, so that n = {n (1),n (2),…,
n (C)} and J = ∑c =1

C n (c) (i.e., J denotes the total number of
model simulations). We will similarly denote a set of
bandwidth parameters h = {h (1),h (2),…,h (C)}, so that

h cð Þ ¼ 0:9min SD X cð Þ
� �

;
IQR X cð Þ� �

1:34

 !
n cð Þ
� �−1=5

: ð14Þ

For each discrete alternative, we construct a kernel density
estimate for the simulated data (i.e., an SPDF), given by

f *n cð Þ xjX cð Þ
� �

¼ 1

h cð Þn cð Þ
Xn cð Þ

j ¼ 1

K
x−X cð Þ

j

h cð Þ

 !
: ð15Þ

As a result of the construction of each individual f ∗n cð Þ xjX cð Þ� �
,

they integrate to one so that ∫ f ∗n cð Þ xjX cð Þ
� �

dx ¼ 1 . That is,

each individual f ∗n cð Þ xjX cð Þ� �
is a proper probability density

function, but they do not take into account the other C−1
alternatives. To create an SPDF that takes into account both
the discrete and continuous random variables, we require
thatZ X

c¼1

C

f n cð Þ xjX cð Þ
� �

dx ¼ 1;

for some function f (⋅), which is called the defective
distribution because it does not integrate to one for a single
alternative c (i.e., in nontrivial cases). To satisfy this
constraint, we scale each density by the corresponding
frequency of the alternative, so that

f n cð Þ xjX cð Þ
� �

¼ n cð Þ

J
f *n cð Þ xjX cð Þ
� �

:

Thus, for a proper SPDF function, Eq. 15 becomes

f n cð Þ xjX cð Þ
� �

¼ 1

h cð Þ J

Xn cð Þ

j ¼ 1

K
x−X cð Þ

j

h cð Þ

 !
: ð16Þ

For the observed data, we denote continuous data as Y =
{Y 1,Y 2,…,YN} and discrete data as Z = {Z 1,Z 2,…,ZN}.
Thus, for the i th pair (Yi, Zi), the density under the assumed
model, conditional on the parameter θ , is given by

Model Y i; Zijθð Þ ¼ f
n Zið Þ Y ijX Zið Þ
� �

;
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Fig. 2 Simulated probability density function (black line) along with the
true probability density function (shaded density) for the Wald
distribution
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and the pseudo-likelihood function is given by

L θjY ; Zð Þ ¼ ∏
i ¼ 1

N

Model Y i; Zijθð Þ:

Finally, the pseudo-likelihood function can be combined
with the prior distribution for θ to form the posterior
distribution

π θjY ; Zð Þ∝π θð ÞL θjY ; Zð Þ:
Given the difficulty of the equations above, the reader may

wonder how challenging it is to implement our method. In
fact, the method is surprisingly easy to program because many
statistical software packages, such as R, Python, and
MATLAB, already possess density functions that can be
modified to use the Epanechnikov kernel and Silverman’s rule
of thumb for bandwidth selection. Thus, in practice,
implementing the method involves (1) calling the density
function for each of the C alternatives and (2) scaling (i.e.,
multiplying) the resulting density values obtained by the
number of times the corresponding alternative was chosen in
the simulation. These scaled densities serve as Eq. 16.5

Simulation study

In this section, we will use the PDA method to fit the LBA
model to choice response time data (i.e., data of mixed type)
simulated from the LBAmodel. In a standard choice response
time paradigm, following the presentation of a stimulus,
subjects are instructed to make a decision between two or
more alternatives. For example, in a random dot motion task,
subjects are presented with a stimulus that contains many dots
that randomly move in one direction or the other (e.g., left or
right) within a fixed region of space. However, only a certain
percentage of these dots move coherently toward the correct
alternative, while the remaining dots move completely
randomly. Subjects are asked to make a decision about what
direction the majority of the dots are moving in, and the
amount of time that passes from the onset of the stimulus to
the decision that is elicited serves as the response time.

Suppose we wished to use likelihood-free techniques to fit
a simulation-based model to data from a choice response time
experiment. For reasons previously discussed, we cannot
know what summary statistics will be sufficient for which
parameters in the model, and so we will need to choose a set
of summary statistics that we feel adequately characterize the
relationship between the model parameters and the choice

response time data. One option is to use the quantiles of both
the correct and error response time distributions, along with
the probability of a correct response. The use of quantiles to
summarize response time distributions has a long history in
mathematical psychology (e.g., Heathcote, Brown, &
Mewhort, 2002; Luce, 1986; Van Zandt, 2000). Although it
has been acknowledged that inference based on the quantiles
is not equivalent to likelihood-based inference (Heathcote &
Brown, 2004; Heathcote et al., 2002; Speckman & Rouder,
2004), this acknowledgment has not discouraged the use of
quantiles when performing frequentist estimation. We
speculate that there are two reasons for using the quantiles
over the likelihood function. First, quantiles are dramatically
more efficient because there are fewer densities to calculate
when using quantiles. Second, quantiles are more robust to
outliers when recovering point estimates of the parameter
values (see Heathcote, Brown, & Cousineau, 2004;
Speckman & Rouder, 2004). That is, outlying observations
have less of an effect on parameter estimates when quantiles
are used.

We argue that in the Bayesian context the use of quantiles is
inappropriate because the quantiles do not provide a suitable
approximation of the likelihood function. To examine this
conjecture, we will use the computationally tractable LBA
model to compare the true posterior estimates (obtained via
standard Bayesian estimation techniques) with estimates
obtained using the synthetic likelihood algorithm with
quantiles as the summary statistics. If the estimates using the
likelihood-free method and quantiles are different from the
true posterior distributions (estimated using likelihood-
informed methods), we would have evidence to support our
claim that the chosen quantiles are not sufficient statistics for
the LBA model parameters. We can also compare the true
posterior estimates with the estimates obtained using our PDA
method, which requires no summary statistics. If the estimates
obtained using the PDA method are similar to the true
posteriors, the results would speak to the utility and generality
of our approach as a method for likelihood-free estimation.

The linear ballistic accumulator model

The LBA model provides a simple explanation of choice and
response time (Brown&Heathcote, 2008). It eliminates many
complexities assumed by previous models, such as
competition between alternatives (e.g., Brown & Heathcote,
2005; Usher & McClelland, 2001), passive decay of evidence
(“leakage”; e.g., Usher & McClelland, 2001), and even
within-trial variability (e.g., Ratcliff, 1978; Stone, 1960).
The model’s simplicity allows closed-form expressions for
the first passage time distributions for each accumulator.
With these equations, one can specify the likelihood function
for the model parameters, which has been instrumental in the
LBA model’s success (e.g., Donkin, Averell, Brown, &

5 We have made code available online that constructs an SPDF estimate
for all three types of data discussed above.
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Heathcote, 2009; Donkin, Brown, & Heathcote, 2011;
Donkin, Heathcote, & Brown, 2009; Forstmann et al., 2010;
Forstmann et al., 2008; Forstmann et al., 2011).

The LBAmodel assumes that following the presentation of a
stimulus, evidence for each response alternative is gathered
ballistically until one of the alternatives reaches a threshold
amount of evidence b . The rate of evidence accumulation dc
for the c th alternative is randomly sampled for each trial from a
normal distribution with mean v (c) and standard deviation s .
The model further assumes that each response alternative may
start with an initial amount of evidence kc, a value that is
sampled randomly for each trial from a continuous uniform
distribution on the interval [0, A]. Finally, the LBA model
assumes that the observed response time distribution is the result
of the decision process described above and a nondecision
process (e.g., time required to initially process the stimulus
and to physically elicit a response) captured by the parameter τ .

To perform our simulation study, we first generated 500
responses from the LBA model by setting the threshold b =
1.0, the upper bound of the start point A = 0.75, the drift rate
for correct responses v (C) = 2.5, the drift rate for incorrect
responses v (I) = 1.5, and the nondecision time τ = 0.2.6 We
conventionally set s = 1 to satisfy mathematical scaling
properties of the model. The remaining parameter values were
selected to be representative of subjects from experimental
data (see, e.g., Turner, Sederberg, Brown, & Steyvers, 2013).

To fit the model in a Bayesian framework, we first specified
uninformative uniform priors for each of the parameters, given
by

b;A; v Cð Þ; v Ið Þ; τ∼CU 0; 10ð Þ;

where CU (a , b ) denotes the continuous uniform distribution
with lower bound a and upper bound b . We specified
completely uninformative priors for the simulation study so
that any accuracy observed in the posterior estimates would be
entirely due to a method’s ability to accurately estimate the
likelihood function, and not due to the influence of the prior.
In our real-world examples below, we will specify informative
priors.

Estimating the posterior

To estimate the posterior distribution of θ = {b ,A ,v (I),v (C),τ},
we use three different approaches. The first method is the
standard approach that makes use of the likelihood function
(see Donkin, Averell, et al., 2009; Donkin, Heathcote, &Brown,
2009; Turner, Sederberg, et al., 2013). The second method is the
PDAmethod for mixed data types as described above. The final
method is the synthetic likelihood algorithm (Wood, 2010),

which requires the specification of a set of summary statistics
S(·), and despite selecting plausible statistics, we will show the
dangers of reducing the observed data to a set of summary
statistics that are not necessarily sufficient.

As is shown in Turner, Sederberg, et al. (2013), the
parameters of the LBA model are generally highly correlated,
which can make conventional sampling algorithms such as
Markov chainMonte Carlo (MCMC; Robert & Casella, 2004)
inefficient to use. As such, for each of the methods below, we
used a genetic algorithm called differential evolution (DE)
with MCMC (DE-MCMC; ter Braak, 2006; Turner,
Sederberg, et al., 2013). DE-MCMC is a population Monte
Carlo algorithm that generates proposals on every trial on the
basis of the information learned in the current estimate of the
posterior. The communication between the “chains" in the
algorithm allows DE-MCMC to generate proposals to match
the shape of the posterior, regardless of how correlated the
parameters may be.

Likelihood-informed method The first method uses the
likelihood function, which was derived from the defective
probability density functions provided in Brown and
Heathcote (2008). The estimates obtained from this method
will be used to evaluate the accuracy of the remaining
methods. For brevity, we do not report our methods for fitting
the model here, but interested readers can consult Turner,
Sederberg, et al. (2013) for an application of DE-MCMC or
Donkin, Heathcote, and Brown (2009) and Donkin, Averell,
et al. (2009) for applications of the programWinBUGS (Lunn,
Thomas, Best, & Spiegelhalter, 2000).

Synthetic likelihood Wood (2010) proposed the synthetic
likelihood algorithm as a method for likelihood-free parameter
estimation that, unlike previous likelihood-free algorithms,
does not require the use of error terms that can sometimes
produce inaccurate posteriors. To implement the synthetic
likelihood algorithm, we first generate a proposal value θ*

and simulate J new data sets of the same size and design as the
observed data so that X = {X1,X2,…,XJ}, where Xj = {Xj ,1,
Xj ,2,…}. For the jth simulated data set, we then compute a
vector of summary statistics S ( j)(Xj) = {S1

(j)(Xj),S2
(j)(Xj),…,

SM
(j)(Xj)}. The summary statistics across the J simulated data

sets are then used to compute the mean vector bμθ , so that

bμθ ¼
1

J

X
j ¼ 1

J

S jð Þ X j

� �
;

and the covariance matrix bΣθ ¼ QQT= J−1ð Þ , where

Q ¼ S 1ð Þ X 1ð Þ − bμθ; S
2ð Þ X 2ð Þ − bμθ;…; S Jð Þ X Jð Þ − bμθ

h i
:

The same summary statistics are computed for the
observed data, which we denote S(Y) (i.e., without the super

6 The drift rates are arbitrarily labeled as “correct" and “incorrect" here,
but we could have just as well labeled them “left" and “right" responses.
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script index), and we assume that they have the parametric
form

S Yð Þ∼N μθ;Σθð Þ;
where N a; bð Þ denotes the normal distribution with mean a
and variance covariance matrix b . Finally, using the normality
assumption and the central limit theorem, the log synthetic
likelihood function is given by

SL θjYð Þ ¼ −
1

2
S Yð Þ − bμθ

� �T bΣ−1

θ S Yð Þ−bμθ

� �
−

1

2
log bΣθ

			 			:
ð17Þ

To implement the synthetic likelihood algorithm for
response time data, we must first choose summary statistics
S (·) that will adequately characterize the relationship between
the model parameters and the observed data. To fit the LBA
data, we chose S (·) to be the quantiles {0.1,0.3,0.5,0.7,0.9} for
both the correct and incorrect response time distributions,
along with the proportion of responses in each choice. Thus,
for a given response time data set Y and Z , we summarized the
data by computing the vector S (Y, Z ) comprising 11 statistics:
5 quantiles for each of the two choices and 1 proportion of
total responses to alternative 1, without loss of generality for
the two-choice task.

While the synthetic likelihood approach has certain
advantages over other likelihood-free algorithms, the
disadvantage of using this approach is that it is more
computationally costly. For each proposal, we generated 100
data sets—each of size N = 500—which were then used to
evaluate the synthetic likelihood shown in Eq. 17. Thus, we
performed a total of 50,000 model simulations per proposal to
evaluate the synthetic likelihood.7 The major difference
between the algorithms is that the synthetic likelihood
algorithm requires sufficient summary statistics, whereas the
PDA method does not.

Probability density approximation The final method we used
to estimate the posterior distribution was the PDA method for
data of mixed type. For each proposal, we simulated themodel
10,000 times to form a stable SPDF, given by Eq. 16. The
bandwidth parameters h were calculated for each proposal by
means of Eq. 14. To increase the accuracy of the
Epanechnikov kernel density approximation, we applied a
log transformation to the simulated response times, which
helped produce more normally-distributed data. As described
above, we scaled the approximate density functions for each
choice by the corresponding proportion of total responses out
of the J simulations to determine the defective distribution for

each choice. Once the SPDF was constructed, we
approximated the likelihood function by evaluating

L θjY ; Zð Þ ¼ ∏
i ¼ 1

N

Model Y i; Zijθð Þ ¼ ∏
i ¼ 1

N

f
n Zið Þ Y ijX Zið Þ
� �

:

Results

For each of the four different likelihood evaluation methods,
we implemented a DE-MCMC sampler, with 24 chains for
4,900 sampling iterations following 100 burn-in iterations.We
set the within-group migration probability to .05, and for each
DE proposal, we randomly sampled the scaling factor γ ∼
CU[0.5, 1]. Additional implementation details of the sampler
can be found in Turner, Sederberg, et al. (2013).

Figure 3 shows the estimated posterior distributions
obtained by the PDA method (top row) and the synthetic
likelihood method (bottom row). The columns of Fig. 3
correspond to the threshold parameter b , start point upper
bound parameter A , drift rate for correct responses v (C), the
drift rate for incorrect responses v (I), and the nondecision time
parameter τ . In each panel, the true estimated posterior
distribution (i.e., the likelihood-informed estimate) is shown
as the density function, and the true parameter value used to
generate the data is shown as the vertical dashed line.

The figure illustrates two important results. First, the
estimates obtained using the PDA method are similar to the
true estimates. Because the PDA method is a general
technique that uses the entire data set, we can be sure that
the accuracy of the estimates will depend only on the quality
of the kernel density estimate. The second important result is
that the estimates obtained using the synthetic likelihood
algorithms are inaccurate. The most likely explanation for this
inaccuracy is that the summary statistics we used are simply
not sufficient for the parameters of the LBA model. Another
possible explanation is that the joint multivariate normality
assumption is not satisfied. However, for this example, we
suspect that the distributional assumption is appropriate,
because the statistics we calculated were far enough from their
respective boundaries (i.e., a boundary at zero) and the sample
size was large enough (J = 100, resulting in 50,000 model
simulations per proposal) to satisfy the joint multivariate
normality assumption. Furthermore, Q-Q plots of themarginal
distribution of the statistics appeared to satisfy the normality
assumption.

Although the combination of quantiles and response
proportion has been used extensively in psychology, in our
example we have found clear evidence that the use of
quantiles does not result in accurate estimates of the posterior
distribution. One of the reasons quantiles are used so
frequently in more traditional fitting techniques (e.g.,
maximum likelihood estimation) is because they are resistant

7 As we will explain below, when using the synthetic likelihood method,
we generated 40,000 samples per proposal more than when using the
PDA method.
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to outliers; however, in this case, using quantiles masks errors
in the fits between the simulated and actual response time
distributions and allows proposals to be accepted that should
be rejected.

Real-world example 1: error-correcting criterion model

The classical SDT model (see above) posits the existence of
two representations of sensory affect and a criterion that is
fixed for the duration of the experiment (Green & Swets,
1966; Macmillan & Creelman, 2005). These assumptions,
while convenient for SDT’s use as a measurement tool, are
not well-suited for SDT’s use as a process model of perceptual
decision making (e.g., Balakrishnan, 1998a, 1998b, 1999).
Specifically, the classic SDT model does not provide any
mechanistic account of how stimulus representations are
established, nor does it explain how the criterion is placed or
adjusted as a function of accuracy, payoffs, or fluctuations in
the stimulus stream. Over the years, many alternatives have
been proposed to extend SDT-as-model to account for basic
experimental manipulations, stimulus properties, feedback,
probability matching, and adjustments following responses
and the accuracy of those responses (Atkinson & Kinchla,
1965; Benjamin, Diaz, & Wee, 2009; Dorfman & Biderman,

1971; Dorfman, Saslow, & Simpson, 1975; Erev, 1998; Kac,
1962, 1969; Kubovy & Healy, 1977; Lee & Dry, 2006;
Mueller & Weidemann, 2008; Treisman & Williams, 1984;
Turner et al., 2011). While these models take wildly different
approaches to the same problem, they all propose a dynamic
adjustment procedure where the stimulus representations take
a new form on every trial. The dynamic process assumed by
most of these models makes model evaluation and parameter
inference difficult.

In this section, we focus on a simple mathematical model
for criterion adjustment in a perceptual decision task. The
model is a generalization of the error-correcting criterion
(ECC) model proposed by Kac (1962, 1969), and is
analytically tractable (see Dorfman & Biderman, 1971, for
derivations). Fitting the ECC model to data using both a
likelihood-informed and likelihood-free method enables us
to further verify our PDA method on a model that does not
assume that responses are a realization of an i.i.d. process, as
in classical SDT. We will fit a hierarchical version of the
model to experimental data that uses a within-subjects
signal frequency manipulation. Thus, to capture the
effects in the empirical data successfully, a model must
be able to dynamically adapt its representations over the
course of an experiment—a feat that standard SDT is
unable to perform.
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Fig. 3 Estimated marginal posterior distributions obtained using the
probability density approximation (PDA) method (top row) and the
synthetic likelihood algorithm (SL; bottom row). In each panel, the true

estimate of the posterior distribution (i.e., the likelihood-informed
estimate) is shown as the black density, and the true parameter value used
to simulate the data is shown as the vertical dashed line
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The experiment

The data from Experiment 2 of Turner et al. (2011) consisted
of a simple signal detection task where subjects were told to
diagnose patients from a community that had been overrun by
an infectious disease. The stimuli consisted of a number
ranging from 1 to 100, which represented the result of a blood
test from a randomly selected patient. Patients were either sick
or well, and subjects were asked to decide which patients
should be treated and which should not. Subjects were told
that a sick patient who was left untreated would die and a well
patient who received treatment would also die. Subjects were
told that well patients would have average blood assay values
of 40 and sick patients would have average blood assay values
of 60. Following each decision, feedback was provided about
the mortality of the patient as a result of the diagnosis.

Subjects were assigned to one of three stimulus conditions,
which differed by the type of distribution the stimuli were
sampled from. For our purposes, we will focus only on the
Gaussian condition, where stimuli were generated by
sampling from one of two Gaussian distributions (i.e., the
noise or signal distributions), which had means of 40 and
60, respectively, and a common standard deviation of 6.67.
Sixteen subjects participated in this condition. Subjects
completed five blocks of 100 trials each. Between each block,
an unannounced change in the frequency of sick patients
occurred. For all subjects, the frequency of sick patients in
the first block was .5. In the second block, the frequency
shifted to .8. In the third block it shifted back to .5, then to
.2 in the fourth block. Finally, the frequency returned to .5 in
the fifth and last block.

The model

We let Ti denote the true value of the stimulus class on trial i
so that Ti = 1 indicates a trial on which a noise stimulus was
presented and Ti = 2 indicates a trial on which a signal
stimulus was presented. We let Ri denote the response on trial
i , where Ri = 1 and Ri = 2 indicate “noise" and “signal"
responses, respectively. On each trial, the presented stimulus
value S i is drawn from one of two distributions f (S |T ),
depending on the value of Ti. For our data, the stimulus
distributions are Gaussian with means of μ = {40, 60} and
standard deviations of σ = {6.67, 6.67}. Thus, on each trial,
Si∼N μTi

;σTi

� �
.

The model assumes that an observer begins on trial 1 with
an initial criterion of θ (1), and we will denote subsequent
locations of this criterion on trial i as θ (i). As in classical
SDT (Green & Swets, 1966), a “noise" response (i.e., R1 = 1)
is elicited if Si ≤ θ (i), whereas a “signal" response (i.e.,R1 = 2)
is elicited if Si > θ (i). As in the experiment, feedback is given
following the response, and observers update the location of

their criterion so that

θ iþ1ð Þ ¼ θ ið Þ þ δiΔTi;Ri ;

where ΔTi;Ri is an element of an updating matrix and δ i is a
transformation of the stimulus class variable:

δi ¼ −1 if Ti ¼ 2
1 if Ti ¼ 1



:

The individual elements of the updating matrix determine
how the model behaves as a function of its response and its
accuracy goals (Dorfman & Biderman, 1971). For example,
Kac (1962) assumed thatΔ1,1 =Δ2,2 = 0 and thatΔ1,1 =Δ2,1

= Δ*, where Δ* was free to vary. Under these specifications,
Kac’s model assumes that no criterion updating occurs when a
response is correct, but when a response is incorrect, updating
does occur, and by the same amount for both types of errors.
The model we will consider here assumes that Δ1,1 = Δ2,2 =
Δ(C) and Δ1,2 = Δ2,1 = Δ(I), where Δ(C) and Δ(I) denote the
degree of criterion change following correct and incorrect
responses, respectively. Thus, the model we investigate here
consists of three parameters per subject: Δ(C), Δ(I), and θ (1).

To extend the model to a hierarchical design, we must
make an assumption about how each of the three parameters
is distributed across subjects. We assume that each of the
model parameters for the j th subject is normally distributed,
so that

Δ Cð Þ
j ∼ N Δ Cð Þ

μ ;Δ Cð Þ
σ

� �
Δ Ið Þ

j ∼ N Δ Ið Þ
μ ;Δ Ið Þ

σ

� �
; and

θ 1ð Þ
j ∼ N θμ; θσ

� �
:

The parameters governing the distribution of the subject-
specific parameters (e.g., Δμ

(C ) above) are called hyper
parameters , and they capture patterns in the data at the group
level. To complete our hierarchical Bayesian model, we must
specify a prior distribution for each of these hyper parameters.
Although we had some information about the criterion
adjustment parameters from Dorfman and Biderman (1971),
we remained cautious when specifying the priors for the hyper
parameters, using only mildly informative priors:

Δ Cð Þ
μ ;Δ Ið Þ

μ ∼ N 0; 10ð Þ; and

Δ Cð Þ
σ ;Δ Ið Þ

σ ∼ Γ −1 4; 15ð Þ;

where Γ−1 (a ,b ) denotes the inverse gamma distribution with
shape parameter a and scale parameter b . Our choice for the
parameters of the inverse gamma reflects our uncertainty
about the degree of individual differences in our data. A shape
of 4 and scale of 15 produce a distribution with a mean of 5, a
standard deviation of 3.45, and a 95 % confidence interval of
(1.71, 13.86). Because we suspected a high degree of
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variability in the criterion adjustment parameters, we believed
that this limited specification was appropriate for our data.

For the initial criterion hyper parameters θμ and θσ, we
centered the prior distribution for the mean θμ on 50, with a
small (i.e., relative to the stimulus distributions) degree of
variability. We made this decision on the basis of the
experimental instructions, which told the subjects the means
of the two types of stimuli. We used the same prior as above
for θσ because, while we suspected far less variability in this
parameter, the scales were different enough to warrant a
slightly ambiguous prior. Thus, we specified the priors as

θμ ∼ N 50; 10ð Þ; and
θσ ∼ Γ−1 4; 15ð Þ:

The distributions assumed in the prior specifications above
were primarily made out of computational convenience.
Specifically, the priors for the hyper parameters, along with
the assumptions about the distribution of subject-specific
parameters, facilitate Gibbs sampling because the conditional
distributions for each of the hyper parameters can be derived
(see Gelman et al., 2004).

Results

For this model, the likelihood function is easy to derive (see
Dorfman & Biderman, 1971), and so we can compare the
estimated posterior distribution using the PDA method with
the estimated posterior distribution obtained using the (true)
likelihood function. To implement the PDA method, we
simulated the model 1,000 times per proposal using the same
stimuli that were presented to the subjects. Thus, our
simulated data consisted of a (500 × 1,000) matrix of signal
and noise responses for each subject. The data for a given
subject consists of 500 signal or noise responses, and so the
PDA method for discrete data types was used for each of the
500 trials. To construct the SPDF, we first tabulated the
number of signal and noise responses for each row of the
simulated data matrix and divided this number by 1,000 (i.e.,
the number of model simulations per trial). The resulting
values served as an estimated probability of a signal and noise
response on trial i under the proposed parameter values (see
Eq. 8). We then multiplied the predicted probabilities
corresponding to the observed response for each of the 500
responses for a given subject together, forming the pseudo-
likelihood in Eq. 5.

We ran both algorithms for 2,500 iterations following a
burn-in period of 500 iterations using 16 chains, resulting in
40,000 samples of the joint posterior distribution. We used
Gibbs steps to update the hyper parameters as discussed in
Turner and Van Zandt (2013) and DE-MCMC to update the
lower-level parameters for each subject (Turner & Sederberg,
2012; Turner, Sederberg, et al., 2013). Convergence of the

chains was assessed using the CODA package in R (Plummer,
Best, Cowles, & Vines, 2006), and the mixing properties of
the chains were assessed through visual inspection.

Having fit the model using both likelihood-informed and
likelihood-free (i.e., PDA) algorithms, we can now compare
the estimated posterior distributions obtained from each
method. Figure 4 shows the estimated marginal posterior
distributions obtained using the PDA method (histograms)
and the true likelihood (densities) for a randomly selected
subject (i.e., subject 8). The figure shows that all of the
parameters for this subject were adequately recovered,
although there still exists some small amount of error in the
estimated posteriors. Comparing the estimates in the
remaining 15 subjects, we observed similarly close alignments
of the estimated posterior distributions.

We can also examine the estimates obtained using the PDA
method at the group level. If the PDA method produced
estimates that systematically mismatched the true posteriors
at the subject level, the errors would propagate to the hyper
parameter estimates. Thus, it is important that the PDA
method matches the true posterior at both the group and
subject levels. Figure 5 shows the estimated marginal
posterior distributions for each of the hyper parameters of
the ECC model using the PDA method (histograms) and the
true likelihood (densities). The figure shows that the two
methods produce virtually identical posterior estimates for
the hyper parameters.

On a modeling level, Fig. 5 shows that the posterior
estimates for the hyper mean parameter for correct
adjustmentsΔμ

(C) has a mean of 0.04, whereas the hyper mean
parameter for incorrect adjustments is larger with an estimate
of 0.33.8 Not surprisingly, the hyper mean parameter θμ is
centered at 50.01, a value that is consistent with the
experimental instructions. The variability of the adjustment
parameters Δσ is small and similar across adjustment types,
and the variability in the initial criterion location is also small.

In this section, we have shown that the PDA method can
accurately recover the posterior distributions for a hierarchical
version of the ECC model. However, the model fit performed
in this section is not as easy as it may seem. Because the ECC
model assumes a dynamic adjustment of the criterion that is
based on both the type of stimulus presented and the response,
to correctly estimate the parameters we must evaluate the
model predictions relative to the data on every trial. For least
squares estimation, one might naïvely compare the simulated
model predictions with the observed responses by way of a
root mean squared error. However, this metric would not
produce accurate parameter estimates, because it implicitly
assumes that the discrepancies between the simulated and

8 The estimates differed by less than 0.001 for both parameters across the
two methods.
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observed data are equally diagnostic of a bad fit on every trial.
Such a procedure would ignore the mismatch between an
adjustment following an incorrect or correct response, which
would produce inaccurate parameter estimates. Thus, methods
for fitting models like the ECC model must respect the
discrepancy between simulated and observed data on each
trial, because such models do not make an i.i.d. distributional
assumption about the responses. Furthermore, methods like
the synthetic likelihood algorithm could not be applied to the
responses on each trial because they are discrete measures,
making the multivariate normal assumption inappropriate.

Real-world example 2: hierarchical LBA and LCAmodels

For our final example, we will investigate how our method
performs on experimental data consisting of mixed measures
(i.e., continuous and discrete). Data of mixed type present
perhaps the most difficult challenge for our method because
the distribution of continuous measures (e.g., response times)
must be estimated accurately for each discrete measure (e.g.,
each response alternative). In addition, the data we will
examine consist of three speed emphasis conditions per
subject, which requires that we properly estimate a total of
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six response time distributions. If one or more of these
distributions is not estimated correctly, the error in the kernel
estimate propagates through to the estimated posterior
distributions, which would result in inaccurate estimates.

In this section, we will investigate two models of choice
response time by fitting them to data. The first model is the
LBA model, which was used above in the simulation study.
Donkin, Averell, et al. (2009) provided a method for fitting the
LBA model hierarchically to data within the program
WinBUGS (Lunn et al., 2000). Despite this advancement,
successfully fitting the LBA model hierarchically to data is a
nontrivial problem, due to the extreme correlations between
the model parameters (Turner, Sederberg, et al., 2013). Fitting
a hierarchical LBA model allows us to further verify that our
method works for data of mixed type. The second model is the
LCA model, which has never been examined in the Bayesian
context and has never been fit hierarchically to data.

The experiment

We chose data presented in Forstmann et al. (2011), which
consisted of 20 young subjects and 14 elderly subjects. The
study was a moving dots task where subjects were asked to
decide whether a cloud of semirandomly moving dots
appeared to move to the left or to the right. Subjects indicated
their response by pressing one of two spatially compatible
buttons with either their left or right index finger (e.g., a left
button for a left index finger). Before each decision trial,
subjects were instructed to respond quickly (the speed
condition), accurately (the accuracy condition), or at their
own pace (the neutral condition). Following the trial, subjects
were provided feedback about their performance. In the speed
and neutral conditions, the young subjects were told that their
responses were too slow whenever they exceeded a response
time of 400 and 750 ms, respectively. In the accuracy
condition, subjects were told when their responses were
incorrect. Each young subject completed 840 trials, equally
distributed over the three conditions.

In this section, we will fit hierarchical versions of both the
LBA and LCA models to a random subset of the data. Due to
computational demands and for illustrative purposes, we
randomly select 4 young subjects (i.e., subjects 1, 3, 7, and
11). For the LBA model, we again use both likelihood-
informed and PDA methods to further verify our method,
whereas for the LCA model, we use only the PDA method
because, for reasons discussed in the Introduction, the LCA
model does not have a tractable likelihood. We now discuss
the details of each model in turn.

The linear ballistic accumulator model

Because we are now fitting the LBA model to experimental
data, we will use more informative priors. First, we denote the

threshold parameters for the accuracy (A), neutral (N), and
speed (S) emphasis conditions as b (A ), b (N ), and b (S ),
respectively. We will reuse the notation for the remaining
parameters from the simulation study above. Because this is
a hierarchical model, we subscript each of the model
parameters with a j to indicate that they are exclusive to the
j th subject. Similarly, we subscript the hyper parameters with
either a μ or a σ to indicate that they are either hyper mean or
hyper standard deviation parameters, respectively. As in the
ECCmodel above, we assume that each of the subject-specific
parameters is a random perturbation of a common distribution
according to the following specification:

log b kð Þ
j

� �
∼ N b kð Þ

μ ; b kð Þ
σ

� �
log Aj

� �
∼ N Aμ;Aσ

� �
I −∞;min b j

� �� �
log v cð Þ

j

� �
∼ N v cð Þ

μ ; v cð Þ
σ

� �
; and

log τ j

� �
∼ N τμ; τσ

� �
I −∞; log min RT j

� �� �� �
;

where k ∊ {A , N , S}, c ∊ {C , I}, RTj is the set of response
times for the j th subject and I (a , b ) is the indicator function
that returns a zero for values that are outside of the interval (a ,
b ) and a one otherwise. We use the indicator function as a
simple way to censor proposals so that they obey certain
restrictions. For example, the upper bound of the start point
A must always be less than the threshold. Because we
constrain the model to have the same start point for each speed
emphasis condition, A must be less than the smallest of the
three threshold parameters.

For the hyper parameters, we used informative priors
similar to what was used in the ECC model:

b kð Þ
μ ;Aμ ∼ N 1:5; 0:8ð Þ

v cð Þ
μ ∼ N 0:75; 0:5ð Þ
τμ ∼ N −1:0; 0:5ð Þ:

For the LBA model, we based our decisions for the priors
on previous work (Donkin et al., 2011). We assumed an
inverse gamma prior distribution with shape parameter 4 and
scale parameter 10 for each of the hyper standard deviation
parameters. As in the simulated example, we conventionally
set s = 1.

The leaky competing accumulator model

For the LCA model, we denote the rate of accumulation for
the c th accumulator as ρ c, the lateral inhibition parameter as
β , the leakage parameter as κ , and the degree of noise in the
accumulation process as ν , which, when simulated, is
drawn from a normal distribution with a mean of zero
and standard deviation ξ .9 The activation of the c th

9 In other words, at each time step t in the evidence accumulation process,
νt∼N 0; ξð Þ .
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accumulator in the model is represented by the
stochastic differential equation

dxc ¼ ρc−κxc−β
X
j≠c

x j

 !
dt

Δt
þ νt

ffiffiffiffiffiffi
dt

Δt

s
xc → max xc; 0ð Þ;

where Δt is a time-constant parameter. Once the degree of
evidence for any accumulator reaches a threshold α , the
process is terminated, and a response is elicited. Similar to
the LBA, the LCA model also assumes a nondecision time
parameter, which we will again denote τ .

To satisfy mathematical scaling properties, we fixed the
noise of evidence accumulation ξ = 3.0. We also fixed dt =
0.01 (with the unit of seconds) andΔt = 0.1. We used similar
notation and made similar assumptions about the priors as in
the LBA model:

log α kð Þ
j

� �
∼ N α kð Þ

μ ;α kð Þ
σ

� �
log ρ cð Þ

j

� �
∼ N ρ cð Þ

μ ; ρ cð Þ
σ

� �
logit κ j

� �
∼ N κμ;κσ

� �
logit β j

� �
∼ N βμ;βσ

� �
; and

log τ j

� �
∼ N τμ; τσ

� �
I −∞; log min RT j

� �� �� �
;

where k ∊ {A ,N , S}, c ∊ {C , I}, and logit (x ) = log (x /(1−x )).
We use the logit function here to enforce the constraint that
β , κ ∊ [0.0, 1.0], to preserve the model’s neurological
plausibility. Specifically, values of β and κ greater than 1.0
would imply that the effect of lateral inhibition and/or leak
would be greater than the activation of the accumulator itself,
which would give rise to unstable network behavior and
difficulty in interpreting parameters. For the hyper parameters,
we used the following informative priors:

α kð Þ
μ ∼ N 2:5; 0:5ð Þ

ρ cð Þ
μ ∼ N 0:20; 0:6ð Þ
κμ;βμ ∼ N 0; 1:5ð Þ
τμ ∼ N −1:0; 0:5ð Þ:

Because the LCA has never been examined in the Bayesian
context, we chose priors for κμ and βμ that produced uniform
priors on the interval [0, 1] for the subject parameters κ j and
β j. As in the LBA model above, we assumed an inverse
gamma prior distribution with shape parameter 4 and scale
parameter 10 for each of the hyper standard deviation
parameters.

Results

All implementation details of the PDA method were
equivalent to those used for the simulation study above,

except that the SPDF for each proposal was estimated with
30,000 model simulations, and we ran the algorithm for 5,000
iterations following a highly efficient burn-in period of 1,000
iterations for 36 chains (i.e., resulting in 180,000 samples; see
Turner & Sederberg, 2012, for details on the burn-in period).
Implementation of the PDA method required only two
selections: the kernel density function and the number of
model simulations per proposal. The kernel density
function—the Epanechnikov kernel—was selected on the
basis of minimization of the Kullback–Leibler divergence
(see the simulation studies above). We chose the number of
model simulations on the basis of parameter recovery on some
preliminary simulation studies and by examination of the
autocorrelation functions (Gelman et al., 2004). When the
number of model simulations are too few, the autocorrelation
functions tend to produce long tails, which is indicative of
large rejection rates and chain dependency. Smaller rejection
rates are obtained with a higher number of model simulations
because, as the number of model simulations increases, the
SPDF converges to the true PDF.

We present the results in two sections. First, we present the
results of the hierarchical LBA model with an evaluation of
the accuracy of the estimates obtained using our PDAmethod
on a single subject. Second, we present the first Bayesian
treatment of the LCA model on the same subject and provide
some interpretations of the model parameters.

The LBA model

Figure 6 shows the estimated marginal posterior distributions
for each of the LBA model parameters for Subject 1, who was
randomly chosen. Figure 6 shows that the estimates obtained
using the PDA method (histograms) closely match the
estimated posterior distributions obtained using the
likelihood-informed method (black densities) for each of
Subject 1’s parameters. The results for the other 3 subjects
were similarly accurate.

On a modeling level, the estimated posterior distributions
are consistent with standard speed–accuracy manipulations.
Namely, the estimated response threshold in the accuracy
condition is higher than in the speed condition, which implies
that as the pressure to respond quickly increases (i.e., moving
from accuracy to speed instructions), subjects require less
accumulated information before eliciting a response, an
adaptation that produces faster—yet less accurate—responses.
The estimated posterior distribution for the correct drift rate is
higher in magnitude than the incorrect drift rate, a result that is
consistent with the raw accuracy of the choice response time
data. See Turner, Sederberg, et al. (2013) for a more extensive
examination of these data using a hierarchical LBA model
(and the true likelihood equations).

As in the ECC model above, we also must examine the
degree of match between the true and PDA-estimated
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posteriors at the group level (i.e., the hyper parameters).
Figure 7 shows the estimated marginal posterior distributions
obtained using the PDA method (histograms) and the
likelihood-informed method (densities) for each of the seven
hyper mean parameters. The figure shows that at the group

level, the estimates obtained using the PDA method are close
to the true estimated posteriors. The estimated posteriors were
similarly accurate for the hyper standard deviation parameters.
The results suggest that even for complicated designs
involving multiple conditions and a hierarchical model, the
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PDA method can accurately recover the true posterior
distribution for data of mixed type.

The LCA model

Because the LCAmodel is intractable, we have no method for
obtaining the true posterior. Regardless, we can still examine
the posterior distributions at the subject and group levels.
Figure 8 shows the estimated marginal posterior distributions
for each of the eight parameters for Subject 1. We chose to
show Subject 1’s parameter estimates as a comparison with
the LBA model above. The figure shows a few interesting
results. First, the estimates for the threshold parameter
decrease as the pressure to respond increases, a result that is
consistent with the LBAmodel. Second, the nondecision time
parameter is appreciably different from the LBAmodel, which
was centered near zero. Third, the drift rate for the correct
response is considerably higher than for the incorrect
response, a result that is also consistent with the LBA model.
Finally, the estimates of leak and lateral inhibition are small in
magnitude and approximately equal. After extensive analysis
of the LCA model, Bogacz et al. (2006) concluded that when
β = κ and both parameters were large in magnitude, the LCA
model performed optimally with respect to the rate of
evidence accumulation (see also Bogacz, Usher, Zhang, &
McClelland, 2012; Bogacz et al., 2007). Here, β ≈ κ , but both
parameters are near zero, so according to Bogacz et al. (2007),
Subject 1 is performing suboptimally.

Figure 9 shows the estimated marginal posterior
distributions for each of the hyper mean parameters in the
model. At the hyper mean level, the leakage and lateral
inhibition parameters tell a different story, as compared with

the estimates for Subject 1 (see Fig. 8). Specifically, the lateral
inhibition parameter is higher—having amean of −2.537 on the
logit scale (i.e., a mean of 0.073 on the standard scale)—than
the leakage parameter, which has a mean of −3.101 on the logit
scale (i.e., a mean of 0.043 on the standard scale). Thus, it
would seem that for some of the subjects in these data, lateral
inhibition played a slightly larger role than it did for Subject 1.

We can further examine the trade-off between the lateral
inhibition parameter β and the leakage parameter κ . Figure 10
shows a scatterplot of the joint posterior distribution of (κ , β )
for each of the 4 subjects in our data. In each panel, the
diagonal line represents the setting β = κ . In the top left of
each panel, we have calculated the probability that the lateral
inhibition parameter is greater than the leakage parameter.
Values near 1 indicate that lateral inhibition was a significantly
stronger force than was leakage, whereas values near .5
indicate that neither force dominated the decision process. In
each panel, the black dot represents the mean of each joint
posterior. For Subjects 1 and 3 (top panel in Fig. 10), neither
leakage nor lateral inhibition played a role in the decision
process. However, for Subjects 7 and 11 (bottom panel in
Fig. 10), lateral inhibition played a slightly larger role in the
decision. These subjects can be described as exhibiting an
“inhibition dominant" pattern (Tsetsos et al., 2011), which
tends to create larger separations in the amounts of
accumulated evidence between the (two) alternatives. The
estimated posterior distributions for subjects 7 and 11 are
indicative of suboptimal evidence integration according to
Bogacz et al. (2006).

Figure 10 also suggests that some caution must be taken
when classifying subjects as either leak or inhibition
dominant. If we were to classify the subjects into groups in a
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Fig. 8 Estimated marginal posterior distributions for each of the eight parameters in the leaky competing accumulator model for Subject 1
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frequentist setting, we might use a best-fitting parameter
estimate as an indication of which response strategy the
subject was using. For example, a subject would be classified
as inhibition dominant when bβ > bκ . However, such a
classification rule ignores the uncertainty in the parameter
estimates. Figure 10 shows that for these 4 subjects,
summarizing a subject’s performance as one type or the other
may be less clear than a simple discrete measure would
suggest.

General discussion

In this article, we have presented a newmethod for likelihood-
free posterior estimation that has considerable advantages
over other current likelihood-free techniques. First, the PDA
method is nonparametric, and it does not make any restrictive
assumptions about the distribution of the data or summary
statistics. Second, our method does not require the use of
tolerance thresholds to evaluate the performance of individual
proposals. Third, and perhaps most important, the PDA
method is the first likelihood-free Bayesian method that does
not require the use of summary statistics. Therefore, the PDA
method is immune to the error introduced from using a set of
summary statistics that are not sufficient.

After presenting the technical details of our method, we
validated the method by way of a simulation study using the

LBA model. The LBA model is a mathematically convenient
model of choice response time with a tractable likelihood
function. Having the likelihood function allowed us to
compare the estimates obtained using our PDA method with
the estimates obtained using standard Bayesian methods. In
addition, we used a synthetic likelihood algorithm with
conventional summary statistics (i.e., the quantiles and
proportion correct). Figure 3 showed that the estimates
obtained using the PDA method were excel lent
approximations to the true posterior, whereas the estimates
obtained using the synthetic likelihood algorithm were
inaccurate. We concluded that the failure of the synthetic
likelihood approach was due to the use of summary statistics
that were not sufficient for the parameters of the LBA model.
These results reveal that quantiles are not appropriate for
Bayesian estimation of the LBA model. At present, the
relative merits of quantile-based and likelihood-based
methods for parameter estimation in the frequentist setting
remain unclear.

After demonstrating that the PDA method provided
accurate estimates of the posterior distribution, we used the
method to fit three hierarchical models to empirical data. The
first model was the ECC model, which unlike other models of
signal detection, does not assume that an observer’s responses
are independent or identically distributed across trials. To fit
the model, we constructed an SPDF estimate for every trial of
the experiment. While this is a challenging problem for least
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squares estimation, as well as other likelihood-free algorithms,
we have shown that the PDA method was able to provide
accurate estimates of the model parameters at both the subject
and group levels.

We then fit hierarchical versions of both the LBA and LCA
models to the same set of experimental data. We explained
that because the data consisted of multiple speed emphasis
conditions, it posed the greatest modeling challenge for the
PDA method, due to the nature of the SPDF construction. For
the LBA model, we showed that our method was able to
accurately recover the true posterior distributions for Subject
1 and the hyper mean parameters. We then compared the
estimates obtained from fitting the two models and found
similar patterns among the threshold and drift rate parameters.
We also examined the degree of lateral inhibition present in

each subject’s response strategy (see Fig. 10). The posterior
estimates revealed that two of the subjects displayed no
significant leakage or lateral inhibition, whereas the other
two subjects displayed a slight inhibition dominant pattern.

While the PDA method is a substantial improvement over
other likelihood-free methods, the current instantiation still
produces only an approximation to the true posterior
distribution.Wewill now discuss the limitations of ourmethod.

Limitations

Because the PDAmethod does not require the use of summary
statistics, the approach is “error free" in the sense that there is
no source of error as a result of using summary statistics. We
stress however, that our algorithm does suffer from three
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potential sources of error. The first isMonte Carlo error, which
is intrinsic to all Monte Carlo approaches (see Robert &
Casella, 2004, for a complete discussion). The second source
of error arises in the estimation of the PDF by means of the
kernel density estimate. This type of error has been studied
extensively (see, e.g., Silverman, 1986), and we argue that, for
most cases and as more sophisticated density estimation
techniques become available, this source of error will become
negligible. When developing the method, we tested a variety
of different distributions that were representative of the types
of distributions one might expect in a typical experiment in
psychology: the gamma distribution, the Wald distribution,
and the Gaussian distribution. We found that in all cases,
constructing the SPDF with the Epanechnikov kernel
provided a good approximation to the true PDF. For skewed
distributions, we found that applying a transformation (e.g., a
shifted logarithmic) before the kernel estimate resulted in even
better approximations to the true PDF.

The third source of error, which is also related to the
accuracy of the density estimate, stems from the number of
simulations of the model per proposal. In the analyses reported
here, we found that the number of model simulations had the
greatest effect on the accuracy of the estimated posterior
distributions. However, the degree of error induced is directly
related to the cost of computation. For example, if we simulate
a model only a few times, the resulting SPDF will not be
reflective of the PDF, and this discrepancy manifests in the
estimates of the posterior distribution. On the other hand, if we
could simulate the model an infinite number of times, the
SPDFwould equal the PDF, assuming that our kernel estimate
did not produce any error. Thus, we argue that as technology
continues to improve, with regard to both computational
speed and density estimation methods, the third source of
error will also become negligible.

The error due to limited computational capacity can be
studied prior to fitting the model to real data or even after a
posterior has been estimated. For example, we could simulate
the model with an arbitrarily selected parameter set θTEST a
fixed number of timesN , and we could call this simulated data
the “base estimate." In the case of an analysis performed prior
to estimating the posterior, θTEST might be a set of values on a
fine grid in the parameter space. The set θTEST could also be
sampled from an estimated posterior distribution to assess the
degree of error in the posterior estimates. We would then
generate a new data set under the same parameter value
θTEST and then compare the new data set to the base estimate
by means of some discriminant function statistic (e.g., the
Kullback–Leibler divergence statistic). After generating and
comparing many new data sets, we would obtain a Monte
Carlo distribution for the discriminant function statistics, and
the range of this distribution would inform our understanding
of how well the number of model simulationsN represents the
PDF. In the limit asN →∞, the distribution of fit statistics will

shrink to have zero variance. Thus, we would like to select a
large enough value of N such that the mean and range of
discriminant function statistics are small and the
computational burden is manageable. This Monte Carlo
testing approach could be used to assess the degree of error
in all estimation problems—an assessment that is not possible
with current likelihood-free methods.

A final limitation of the PDA method is one of
computational complexity. Generating the SPDF for each
proposal can be costly, especially for the complex stochastic
models used in psychology. However, as technology
continues to improve, the cost associated with using the
PDA method (and likelihood-free techniques in general) will
be dramatically reduced.Whereas the LBAmodel can be fit to
data from a single subject in under 10 min using a multicore
computer and our method, we used a graphics processor unit
(GPU) for simulations of the LCA model to reduce the
computational burden. For example, a typical LCA model fit
to a single subject can be obtained in ≈ 45 min on an entry-
level nVidia GPU running CUDA. We feel that this
computational cost is a small price to pay for an accurate,
likelihood-free estimate of the posterior distribution.

Although we demonstrated the PDA method with only a
few cognitive models, it is important to emphasize that the
method is applicable to any cognitive model in psychology
and neuroscience, from models of memory, such as SAM
(Gillund & Shiffrin, 1984), REM (Shiffrin & Steyvers,
1997), BCDMEM (Dennis & Humphreys, 2001), Minerva
(Hintzman, 1988), TODAM (Murdock, 1982), SLiM
(McClelland & Chappell, 1998), TCM (Howard & Kahana,
2002), TCM-A (Sederberg et al., 2008), and CMR (Polyn
et al., 2009), to dynamic models of perceptual choice, such
as DST (Pleskac & Busemeyer, 2010), dynamic SDT (Turner
et al., 2011), RTCON (Ratcliff & Starns, 2009), and the self-
regulating accumulator model (Vickers & Lee, 1998, 2000), to
neurologically-based models, such as LEABRA (O’Reilly,
2001, 2006), FFI (Shadlen & Newsome, 2001), and the neural
integrators model (Mazurek, Roitman, Ditterich, & Shadlen,
2003). In short, if one can simulate a model and it has
parameters, using our PDAmethod it is now possible to obtain
accurate Bayesian parameter estimates for the model, given
the data. When used in conjunction with DE (ter Braak, 2006;
Turner & Sederberg, 2012; Turner, Sederberg, et al., 2013),
these estimates are possible at nearly the same computational
cost as finding a single best-fitting parameter set.

Conclusions

In this article, we have presented a newmethod for likelihood-
free (posterior) estimation. Our method improves on other
likelihood-free methods by creating a general framework that
requires no summary statistics or error terms. We believe that
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our method is an improvement over rejection-based ABC
samplers (Beaumont et al., 2009; Pritchard et al., 1999;
Sisson et al., 2007; Toni, Welch, Strelkowa, Ipsen, &
Stumpf, 2009) because it allows us to evaluate a proposal’s
fitness on a continuous scale. Our method improves upon
kernel-based ABC approaches (Turner & Sederberg, 2012;
Wilkinson, 2008) and synthetic likelihood approaches (Wood,
2010) because it does not require the use of summary
statistics. Instead, the framework we propose constructs a
nonparametric probability density estimate for the likelihood
of each observed data point Yi. While our approach may seem
computationally demanding, we have shown that common
assumptions about the distribution of the data (e.g., an i.i.d.
assumption) can be exploited to obtain accurate estimates in a
short amount of time.

When developing a model in any field, one often
investigates many variants of a single base model.
Likelihood-free estimation algorithms, which require only
simulations of the model, afford us the opportunity to test
and explore many variants of the base model without arduous
derivations for each model variant. The posteriors that these
algorithms provide can give us clear information about the
relationships between the parameters—information that might
otherwise be available only through extensive experience with
each variant. Equipped with only a prior distribution and the
PDA method, accurate likelihood-free posterior estimation is
now feasible for any model.
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